
Mag. Dipl.-Ing. Margareta Cigli£, Bakk.

Time Management in Cyclic Business Processes

DISSERTATION

zur Erlangung des akademischen Grades

Doktorin der Technischen Wissenschaften

Alpen-Adria-Universität Klagenfurt

Fakultät für Technische Wissenschaften

Betreuer
O.Univ.-Prof. Dipl.-Ing. Dr. Johann Eder
Alpen-Adria-Universität Klagenfurt
Institut für Informatik-Systeme

Gutachter
O.Univ.-Prof. Dipl.-Ing. Dr. Johann Eder
Alpen-Adria-Universität Klagenfurt
Institut für Informatik-Systeme

Gutachter
Prof. Carlo Combi, Ph.D.
Università degli Studi di Verona
Dipartimento di Informatica

Klagenfurt a. W., August 2020





Eidesstattliche Erklärung

Ich versichere an Eides statt, dass ich

• die eingereichte wissenschaftliche Arbeit selbstständig verfasst und keine an-

deren als die angegebenen Hilfsmittel benutzt habe,

• die während des Arbeitsvorganges von dritter Seite erfahrene Unterstützung,

einschlieÿlich signi�kanter Betreuungshinweise, vollständig o�engelegt habe,

• die Inhalte, die ich aus Werken Dritter oder eigenen Werken wortwörtlich

oder sinngemäÿ übernommen habe, in geeigneter Form gekennzeichnet und

den Ursprung der Information durch möglichst exakte Quellenangaben (z.B. in

Fuÿnoten) ersichtlich gemacht habe,

• die eingereichte wissenschaftliche Arbeit bisher weder im Inland noch im Aus-

land einer Prüfungsbehörde vorgelegt habe und

• bei der Weitergabe jedes Exemplars (z.B. in gebundener, gedruckter oder dig-

italer Form) der wissenschaftlichen Arbeit sicherstelle, dass diese mit der ein-

gereichten digitalen Version übereinstimmt.

Mir ist bekannt, dass die digitale Version der eingereichten wissenschaftlichen Arbeit

zur Plagiatskontrolle herangezogen wird. Ich bin mir bewusst, dass eine tatsachen-

widrige Erklärung rechtliche Folgen haben wird.

Margareta Cigli£ e.h. Klagenfurt a. W., August 2020





Vsem mojim najljub²im, ki jih vedno nosim v srcu

in mi bodo vedno blizu - tudi £e so v drugi drºavi,

na drugem kontinentu ali na drugem svetu.





Zusammenfassung

In der heutigen globalisiertenWelt müssen die Arbeitsabläufe rund um den Globus

perfekt aufeinander abgestimmt werden. Zeitmanagement gewann sowohl im geschäft-

lichen wie auch im privaten Leben an Bedeutung. In vielen Geschäftsprozessen

entscheidet ein gutes Zeitmanagement über den Erfolg des Prozesses und somit auch

der prozessausführenden Organisation. In manchen Prozessen, wie z.B. medizinis-

chen Behandlungen, kann ein gutes Zeitmanagement sogar den Unterschied zwischen

Leben und Tod ausmachen.

Wichtige Bereiche im Zeitmanagement in Geschäftsprozessen sind die Model-

lierung von Zeiteinschränkungen sowie die Überprüfung von verschiedenen Eigen-

schaften wie z.B. Widerspruchsfreiheit der Zeiteinschränkungen, Erfüllbarkeit von

Zeiteinschränkungen oder Steuerbarkeit eines Prozesses. Diese Bereiche sind bereits

gut erforscht, allerdings nur für azyklische Geschäftsprozesse. Zeitmanagement in

Geschäftsprozessen mit Schleifen stellt in der Forschung eine Lücke dar, mit der wir

uns in der vorliegenden Dissertation befassen.

In dieser Arbeit präsentieren wir die erweiterten Zeiteinschränkungen. Diese

machen es möglich, Zeiteinschränkungen zwischen zwei Aktivitäten in einem zyk-

lischen Geschäftsprozess zu de�nieren. Weiters stellen wir die Funktion atomize vor,

die beim Entfalten eines zyklischen Prozesses in einzelne Prozesspfade die erweiterten

Zeiteinschränkungen in atomare Zeiteinschränkungen transformiert.

Um die Eigenschaften wie die Steuerbarkeit eines zyklischen Geschäftsprozesses

mit erweiterten Zeiteinschränkungen untersuchen zu können, muss man zunächst

prüfen, ob der gegebene Prozess terminieren muss, um alle Zeiteinschränkungen er-

füllen zu können. Dazu präsentieren wir die Terminierungsprüfung, mit der wir eine

solche Prüfung vornehmen können. Prozesse, die die Terminierungsprüfung positiv

bestanden haben, können in azyklische Prozesse entfaltet werden und mit bereits

vorhandenen Verfahren auf z.B. Steuerbarkeit überprüft werden.

Die genannten Forschungsbeiträge dieser Dissertation werden mit einem Proto-

typ abgerundet. Dieser kann die erweiterten Zeiteinschränkungen in einem gegebe-

nen zyklischen Prozess interpretieren, diese in atomare Zeiteinschränkungen trans-

formieren und die Terminierungsprüfung durchführen.

I



II



Abstract

In these days, the whole world needs to be clocked in a perfect rhythm more

than ever. Time management became a crucial discipline in professional as well as in

personal life. In many business processes, good time management is the key factor of

(�nancial) success. In some cases, e.g. medical treatments, time management gains

even more importance and can make the di�erence between life and death.

An important �eld of time management in business processes is modeling of time

constraints as well as checking if they ful�ll various properties like consistency, sat-

is�ability, or controllability. There has been plenty of research in this �eld, however,

the loops in business processes are constantly left out of focus. The intention of this

thesis is to close this gap and to focus solely on loops.

In this thesis, we introduce Extended Time Constraints (ETCs) that enable us to

de�ne time constraints in a cyclic process. ETCs represent temporal bounds between

two activities in a cyclic process. These activities can appear multiple times during

the process execution due to the loops they are placed in. In this thesis, we de�ne

the syntax and the semantics of ETCs. Furthermore, we introduce a function that

atomizes (instantiates) ETCs into Atomic Time Constraints (ATCs) if we decompose

a cyclic process into Instance Types (process paths).

In order to check the consistency, satis�ability, or controllability of a cyclic process

with ETCs, we �rst check if a cyclic process must terminate in order to satisfy all

time constraints. We do this with the Termination Check that we introduce in this

thesis. The Termination Check helps us to sort out the processes with loops that

cannot be temporally bounded. Cyclic processes that pass the Termination Check

can be unfolded into acyclic processes and checked for consistency, satis�ability, or

controllability with existing algorithms.

We complete our contribution with a prototype that is able to interpret ETCs,

transform them into ATCs, and to perform the Termination Check on any cyclic

process with Extended Time Constraints.

III



IV



Acknowledgments

I am very honored that I had the chance to work for and with Prof. Johann Eder

in the Department of Informatics Systems. Prof. Eder constantly accompanied my

work and enriched it with his brilliant ideas. I am very thankful for all the time he

took for me, for his valuable constructive criticism, and for all discussions that we

have had. They raised the quality of this work enormously.

I am very grateful for meeting Prof. Carlo Combi and I am very honored for

having him as a reviewer. The meetings and discussions with him helped me to

re�ect on my research from other perspectives.

Furthermore, I want to thank Dr. Konstantin Schekotihin for all of the discussions

that we had and for the hints regarding ASP tools.

It is a great blessing that I had the opportunity to study abroad at the University

of Klagenfurt. I would like to thank my beloved parents and my sister Ema for making

this possible and for all their patience and support. Without them, everything would

have been much harder.

Being a PhD-student was a very unique experience that made me discover my

own boundaries but was also a lot of fun. I am very lucky that I was accompanied in

my journey by many helpful and understanding colleagues that became my friends.

I would especially like to thank Dr. Julius Köpke, Dr. Patrick Rodler, Dr. Horst

Pichler, and Marco Franceschetti for the interesting discussions, exchange of ideas,

and their great company. A big thank you also goes to my former o�ce mate, Dr.

Stefanie Beyer, for being so uncomplicated, understanding, cheering, and funny. We

could �ll a book with our o�ce stories.

I started a new job during the �nal PhD-phase in 2017 that made this journey

even harder. I would like to thank all of the nice colleagues at Kelag for their under-

standing and support - especially my bosses Walter Penker and Michael Wieltschnig.

There were many more people involved into my PhD-journey � friends, colleagues

at work, and PhD-colleagues that I met at the conferences. I am very thankful to

each and every one of them. I am also grateful for my lovely cats, who kept me

company and entertained me during long writing sessions.

V



I would like to acknowledge my gratitude to Andrew Moore, Ema Moore, and

Dr. Christopher Schwarzlmüller for reading this thesis so carefully and correcting

my English. Thank you for your patience and fast responses.

Last but not least, I would like to thank my dear Christopher, who always believed

in me and was proud of me on every step that I made. He encouraged me to do more

than I thought I could. He was never 'jealous' of my work, even during our very rare

times together. Thank you for your strong belief and your support.

VI



Contents

1 Introduction 1

1.1 Problem De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Business Process Management 7

2.1 Business Process Modeling . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Business Process Analysis . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Business Process Time Management 17

3.1 Business Process Time Patterns . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Durations and Time Lags . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Restricting Execution Times . . . . . . . . . . . . . . . . . . . 20

3.1.3 Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.4 Recurrent Process Elements . . . . . . . . . . . . . . . . . . . 21

3.2 Modeling and Veri�cation of Temporal Aspects . . . . . . . . . . . . 22

3.2.1 Timed Work�ow Graph . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Work�ow Constraint Graph . . . . . . . . . . . . . . . . . . . 24

3.2.3 Temporal Work�ow . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Cycle Handling Overview . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Extended Time Constraints 31

4.1 Basic Models and De�nitions . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Process Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Loop Instance Type . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.3 Instance Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

VII



4.2 Extended Time Constraints . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Extended Time Constraints Syntax . . . . . . . . . . . . . . . 57

4.2.2 Extended Time Constraints Semantic . . . . . . . . . . . . . . 60

4.3 Atomic Time Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Termination Check for Cyclic Processes 87

5.1 Process Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.1 Process Graph Transformation . . . . . . . . . . . . . . . . . . 94

5.1.2 Extended Time Constraints Transformation . . . . . . . . . . 98

5.2 Time Constraints Inference . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Termination Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Prototypical Implementation 137

6.1 Answer Set Programming . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Prototype Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3 Prototype Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7 Conclusions and Future Work 141

A facts.dl 145

B rulesBasic.dl 147

C rulesProcessTransformation.dl 153

D rulesTCInference.dl 165

E rulesTerminationCheck.dl 169

References 170

VIII



List of Figures

1.1 A process with a loop and conventional time constraints . . . . . . . 3

2.1 Business process lifecycle [Wes07] . . . . . . . . . . . . . . . . . . . . 8

2.2 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Gateways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Swimlanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Example of a BPMN process model [OMG13] . . . . . . . . . . . . . 13

3.1 Durations and Time Lags . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Example of a Timed Work�ow Graph from [EPR99] . . . . . . . . . . 23

3.3 Procurement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Procurement Process WCG (adapted from [BWJ02b]) . . . . . . . . . 25

3.5 Temporal Work�ow Graph [CP09]) . . . . . . . . . . . . . . . . . . . 27

4.1 Energy supplier switch process in deregulated Austrian energy market

(derived from the speci�cation of the energy market communication

[Lie18]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Example of a process graph . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Example of a Loop Instance Type . . . . . . . . . . . . . . . . . . . . 44

4.4 Example of a valid Instance Type I1 . . . . . . . . . . . . . . . . . . 55

4.5 Example of a valid Instance Type I2 . . . . . . . . . . . . . . . . . . 55

4.6 Example of a valid Instance Type I3 . . . . . . . . . . . . . . . . . . 55

4.7 Example of a valid Instance Type I4 . . . . . . . . . . . . . . . . . . 61

IX



4.8 Example of a valid Instance Type I5 . . . . . . . . . . . . . . . . . . 61

4.9 Example of a valid Instance Type I6 . . . . . . . . . . . . . . . . . . 61

4.10 Result of the atomization function for TC23 on I4 . . . . . . . . . . . 83

4.11 Result of the atomization function for TC23 on I5 . . . . . . . . . . . 83

5.1 Example 1 � positive Termination Check . . . . . . . . . . . . . . . . 88

5.2 Example 2 � positive Termination Check . . . . . . . . . . . . . . . . 89

5.3 Example 3 � positive Termination Check . . . . . . . . . . . . . . . . 90

5.4 Example 4 � negative Termination Check . . . . . . . . . . . . . . . . 91

5.5 Minimal example of a process transformation . . . . . . . . . . . . . . 93

5.6 3-iterated Process Graph of the process graph from �gure 4.2 . . . . . 98

5.7 3-iterated Process Graph of the process graph from �gure 4.2 with a

set of ETCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.8 Inference of ATCs in a sequence . . . . . . . . . . . . . . . . . . . . . 107

5.9 ATC closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.10 Inference of ATCs in an AND-block (1) . . . . . . . . . . . . . . . . . 108

5.11 Inference of ATCs in an AND-block (2) . . . . . . . . . . . . . . . . . 108

5.12 Inference of ATCs in an XOR-block (1) . . . . . . . . . . . . . . . . . 109

5.13 Inference of ATCs in an XOR-block (2) . . . . . . . . . . . . . . . . . 110

5.14 Inference of ATCs in an XOR-block (3) . . . . . . . . . . . . . . . . . 110

5.15 Inference of ATCs in a LOOP-block (1) . . . . . . . . . . . . . . . . . 111

5.16 Inference of ATCs in a LOOP-block (2) . . . . . . . . . . . . . . . . . 113

5.17 Example 1 - positive termination check . . . . . . . . . . . . . . . . . 117

5.18 Example 2 - positive termination check . . . . . . . . . . . . . . . . . 118

5.19 Example 3 - positive termination check . . . . . . . . . . . . . . . . . 119

5.20 Example 4 - negative termination check . . . . . . . . . . . . . . . . . 120

5.21 Example 5 - negative termination check . . . . . . . . . . . . . . . . . 121

5.22 Example 6 - positive termination check . . . . . . . . . . . . . . . . . 122

5.23 Example 7 - positive termination check . . . . . . . . . . . . . . . . . 123

5.24 Example 8 - negative termination check . . . . . . . . . . . . . . . . . 124

5.25 Example 9 - negative termination check . . . . . . . . . . . . . . . . . 126

5.26 Example 10 - positive termination check . . . . . . . . . . . . . . . . 127

5.27 Example 11 - negative termination check . . . . . . . . . . . . . . . . 128

X



5.28 Example 12 - negative termination check . . . . . . . . . . . . . . . . 130

5.29 Example 13 - negative termination check . . . . . . . . . . . . . . . . 132

5.30 Example 14 - negative termination check . . . . . . . . . . . . . . . . 133

XI





List of Tables

3.1 Process time pattern catalogue[LWR14] . . . . . . . . . . . . . . . . . 18

3.2 Consolidated results of the systematic literature review [LWR14] . . . 19

4.1 Activities in deregulated energy market . . . . . . . . . . . . . . . . . 33

4.2 Loops in deregulated energy market . . . . . . . . . . . . . . . . . . . 33

4.3 Extended Time Constraints in deregulated energy market . . . . . . . 33

5.1 Termination check examples . . . . . . . . . . . . . . . . . . . . . . . 116

6.1 Prototype execution time evaluation . . . . . . . . . . . . . . . . . . 140

XIII





�The clock, not the steam-engine, is the key-machine

of the modern industrial age.�

� Lewis Mumford

Chapter 1

Introduction

The modern world was revolutionized by the time measurement that came with the

concept of universal time-scale after the �rst industrial revolution in the mid-19th

century. Philosopher of technology Lewis Mumford once famously wrote it: "The

clock, not the steam-engine, is the key-machine of the modern industrial age."

In the fourth industrial revolution that is unfolding before our very eyes, the in-

ternet (of things) and digitalization are the driving forces of the revolution. However,

time remains a key factor. The entire world needs to be synchronized in a perfect

rhythm now more than ever. Time management became a crucial aspect of both

professional and personal matters. In many business processes, good time manage-

ment is the key factor of (�nancial) success. In some cases, e.g. medical treatments,

time management is even more important and can make the di�erence between life

and death.

In the 1990's, soon after the rise of business process management in the 1980's,

time management in business processes became a matter of research. Many �elds

of time management evolved in the last few decades, e.g. modeling of temporal

information [EP00, BWJ02b, CP03, CKGJ13, CGJ+07, MO99], computation of time

plans [EPR99, EEP06, LNCY11], scheduling [EPGN03, AF08, BWJ00, Bus98, CP06,

LKR13], time patterns [LWR09, LWR14], exception handling [PWE09, vdARD05],

temporal prediction [vdASS11], and others. A short overview of the development of

the �eld time management in business processes is given in [EPR13].

An important �eld of time management in business processes is modeling of time

constraints, as well as checking if they ful�ll various properties like consistency,

1



2 CHAPTER 1. INTRODUCTION

satis�ability, or controllability. There has been plenty of research in this �eld,

however, the loops in business processes are constantly left out of focus.

In the literature, time constraints su�er a lack of a speci�cation that is adapted

to business processes with loops and the nature of some loops (uncertain repetition

of activities).

In the process of property checking or in the computation of time plans for a

business process, the loops are mostly not handled at all (e.g. [LSPG06, EGP00]),

handled as a complex activity (e.g. [Mar00, BWJ00]), or rolled out into a sequence

(e.g. [SKK05]).

Combi et al. propose a more advanced approach of loop handling - a translation

of loops and related temporal constraints into conditional blocks (XORs) [CGPP12,

CGMP12, LPCR13, CGMP14]. Rewriting loops into conditional blocks o�ers an

adequate handling of loops and related temporal constraints, however, the authors

make several restrictions to be able to handle the complexity that arises with loops.

They limit the maximum number of loop iterations already in the process model

as well as the variety of temporal constraints to only such constraints that consider

cyclic elements between two directly succeeding iterations [LPCR13], or the same

iteration [CGPP12].

In [Pic06], Pichler introduced an advanced loop handling approach that allows

the handling of unbounded loops. The author assigns branching probabilities to

work�ow graphs and uses this information to transform a cyclic work�ow graph into

an acyclic graph called a Probabilistic Unfolded Work�ow Graph. To prevent an

in�nite growth of the graph, graph expansion stops when the probability of missing

cases is below a certain threshold.

Pichler et al. introduce another interesting approach that considers loops in

[PEC17]. They introduce temporal splits and temporal loops that use temporal

conditions to decide which branch in a split will be taken, or if a loop can be entered.

An example of such a temporal condition attached to a temporal loop is elapsed <

100. Such a loop can only be entered if less than 100 time units passed since the

process instance was started.

In the literature, loops are mostly mentioned as a part of the business process

that is not the primary focus of the work. The intention of this thesis is to close this

gap and to focus solely on loops.



1.1. PROBLEM DEFINITION 3

1.1 Problem De�nition

Time management begins with the de�nition of time constraints. Time constraints

that we know from the literature, e.g. [EPR99, BWJ02b, CGJ+07] cannot be used

in processes that contain loops. Let us consider the example from �gure 1.1 to un-

derstand the problem. The process in �gure 1.1 contains 2 Upper Bound Constrains

(UBCs): ubc(A,D, 30) and ubc(B,D, 14).

Figure 1.1: A process with a loop and conventional time constraints

The �rst Upper Bound Constraint ubc(A,D, 30) limits the maximal duration

between the ending point of the source activity A and the ending point of the des-

tination activity D to 30 time units (e.g. days). In other words, activity D must

end within 30 days after activity A has ended. The second Upper Bound Constraint

ubc(B,D, 14) limits the maximal duration between the ending point of the source ac-

tivity B and the ending point of the destination activity D to 14 days. Since activity

B appears in a loop and can therefore occur multiple times, the UBC ubc(B,D, 14)

should have speci�ed not only the source activity, but also the occurrence(s) of that

particular activity - which it does not. It is not clear if the UBC applies to the �rst

occurrence of the activity B, to each occurrence, or maybe only to the last occur-

rence. This problem leads us to the �rst research question that we deal with in our

research:

RQ1: How can we de�ne time constraints in a cyclic process?



4 CHAPTER 1. INTRODUCTION

The next step in time management is to check if a process and the de�ned time

constraints satisfy particular properties, e.g. temporal consistency, satis�ability of

time constraints, or process controllability. Out of those properties, process con-

trollability1, introduced by Combi et al. in [CP09], is the strongest one. However,

existing algorithms for controllability checking [CP09, CHP13] are not able to check

cyclic processes. This brings us to the next challenge stated in the research question

RQ2:

RQ2: How can we check the controllability of a cyclic process?

In order to check the controllability of a cyclic process with existing algorithms,

the process must �rst be unfolded to an acyclic process. The problem that we face in

the unfolding process, are unbounded loops that can be unfolded endlessly. The idea

is to bind the unfolding process of unbounded loops with the given time constraints

that temporally limit the duration of a loop block. However, not every unbounded

loop involves such time constraints that are able to bind the unfolding process. Due

to this issue, we de�ne a sub-research question RQ2a that we deal with in this thesis:

RQ2a: How can we check if a cyclic process must terminate in order to satisfy all

time constraints?

The answer to this research question will help us to sort out the processes with

loops that cannot be temporally bounded in a pre-step before the controllability

check. Therefore, the answer to RQ2a brings us a step closer to the controllability

check of cyclic processes.

1In general, in a controllable temporal process it is possible to satisfy all temporal con-
straints for any possible duration of tasks that cannot be in�uenced by the agent (contingent
links).[CP09][CP10][CGMP12]



1.2. OUTLINE OF THE THESIS 5

1.2 Outline of the Thesis

In this thesis, we address the research questions RQ1 and RQ2a. The thesis is

structured as follows:

Chapter 2 delivers an overview of business process management in general and

narrows the focus to business process modeling and business process analysis that

accompany us through the thesis.

Chapter 3 digs deeper into one particular aspect of business process management -

time. First, time patterns give us an overview of which time information is modeled in

business processes and how it is modeled. Afterwards, we describe the main modeling

and veri�cation approaches of temporal aspects that can be used as a starting point

for the pattern TP9: Cyclic Elements, which describes time lags between activities

in a loop.

Our contribution to the research �eld of business process time management is

described in chapters 4, 5, and 6, which are the essence of this thesis. They add

new knowledge to the �eld modeling and analysis of time perspective of business

processes with loops.

In chapter 4, we �rst introduce some basic models (Process Graph, Loop In-

stance Type, and Instance type) that we use throughout the thesis. The core of this

chapter is the introduction of Extended Time Constraints (ETCs) for modeling time

information in processes with loops. We introduce the syntax and the semantic of

ETCs and de�ne the atomization function that translates ETCs in a cyclic process

into Atomic Time Constraints (ATCs) in an Instance Type (work�ow path). This

chapter delivers an answer to the research question RQ1.

In chapter 5, we introduce the Termination Check, which tests whether a given

cyclic process must terminate in order to satisfy all speci�ed Extended Time Con-

straints or not. Termination Check consists of three steps: 1) process transformation,

2) time constraints inference, and 3) termination check. This chapter describes and

formalizes each of these steps and delivers several examples with diverse process

structures and ETCs. The Termination Check for cyclic processes is an answer to

the research question RQ2a.



6 CHAPTER 1. INTRODUCTION

Chapter 6 delivers a proof of concept for the concepts and formalisms introduced

in chapters 4 and 5. We present a prototype that can take a cyclic process with a

set of Extended Time Constraints as an input and checks if the input process must

terminate in order to satisfy all ETCs or not. The prototype with an input example

is attached in Appendices A, B, C, D, and E.

We draw our conclusions in chapter 7 and give some directions for future work.



Chapter 2

Business Process Management

Throughout history, mankind has become more specialized and organized. In the

last few centuries, the 1st, 2nd, and 3rd industrial revolution substantially sped

up this evolution. In the 3rd industrial revolution, computers and other electronic

devices became accessible and led to digitalization and automation of work as well

as completely new business models. The division of work across organizational units

and di�erent people, together with evolving information systems in the 80's led to the

early beginnings of business process management. Work�ow management systems

(WfMS) and enterprise resource planning (ERP) systems [CBS04] were introduced

to support business processes and functions. Both systems played an important role

for (partial) automation of business processes. Today, business process management

covers much more than only automation of business processes and has become an

essential part of many organizations.[vdALRS16]

Business process management (BPM), as de�ned by Weske, �includes concepts,

methods, and techniques to support the design, administration, con�guration, en-

actment, and analysis of business processes�[Wes07].

A business process consists of activities, events, and decision points and involves

actors, data, and other objects to reach a particular process outcome. An activity is

a unit of work that has a duration and is assigned to and completed by an actor. An

actor can be a person as well as an organization or a software. Events, in contrast

to activities, have no durations and no actors. Decision points are used to navigate

through the process.[DRMR13]

7



8 CHAPTER 2. BUSINESS PROCESS MANAGEMENT

According to Weske, business process management typically consists of four

phases that complement and build on each other. These phases, as shown in �g-

ure 2.1, are collectively called the business process lifecycle. A brief description of

each business process lifecycle phase, as depicted in [Wes07], is given below.

Figure 2.1: Business process lifecycle [Wes07]

Design and Analysis

In this initial stage (on the right in �gure 2.1), business processes �rst get identi�ed.

Business domain experts, process designers, and other business process stakeholders

exchange the information about possible process instances. This information basis

is used to model the processes, which can be done in a workshop with representing

stakeholders. There are di�erent graphic notations that can be used for modeling

business processes in this phase, e.g. Business Process Model and Notation (BPMN).

Once the processes get identi�ed and modeled, their behavior gets analyzed and

veri�ed. If the behavior satis�es the expectations, the next phase in the business

process lifecycle can be approached.



9

Con�guration

In the con�guration phase, the identi�ed processes get implemented. The implemen-

tation can be done without software support in the form of organizational rules and

policies that are communicated among the targeted organizational units, or it can be

done with software support. In the latter case, processes get con�gured in the cho-

sen business process management system (BPMS), integrated in the organizational

software landscape, and tested.

Enactment

After the processes have been con�gured in a BPMS, processes can be started in this

phase, as well as have their running behavior monitored. The starting event of the

process could be, for example, an incident or a customer order. The completion of the

process activities, compliance to de�ned constraints, and other status information is

constantly monitored in this phase and thus delivers important decision information

for possible actions, e.g. inform the customer that the order will have a delay.

Evaluation

The logged process execution information from the previous phase can lead to in-

teresting discoveries in the evaluation phase. Process models, unknown process be-

haviors, and many more can be deducted from the logs. In recent years this phase

gained a lot of attention and became popular under the name process mining. A

good overview of this discipline can be found in [vdA16].

Each of the described phases of the business process lifecycle has an impact on the

other phases. The process evaluation phase, for example, impacts the stakeholders

to adapt the processes, remodel, and then reimplement them. It is very important

that the stakeholders take care with adequate representation and storage of all pro-

cess information and e�cient possibilities to search for it, as well as other related

information, e.g. information technology landscape.

The research work described in this thesis is settled in the �rst phase of the business

process lifecycle - design and analysis. More details on this phase are given in the

following two sections.



10 CHAPTER 2. BUSINESS PROCESS MANAGEMENT

2.1 Business Process Modeling

Over time, many formal and conceptual modeling languages for business processes

were introduced, e.g. Petri nets, UML activity diagrams, Event-driven Process

Chains (EPCs), Business Process Model and Notation (BPMN), etc. A compari-

son of di�erent modeling languages for business processes can be found in [ZMI10].

The most commonly used modeling language currently is the Object Management

Group (OMG) standard BPMN. Conceptual business process models in this thesis

are based on BPMN, therefore BPMN will be described in more detail.

BPMN in version 2.0.2 from January 2014 [OMG13] consists of many modeling el-

ements, from which only the core elements are being used in most cases [ZMR13].

A process in BPMN consists of four categories of elements: �ow objects, connecting

objects, swimlanes, and artifacts [KIG+15, WM08].

Flow objects

Flow objects a�ect the process and thus its outcome. There are three groups of �ow

objects: activities, events, and gateways. Activities (shown in �gure 2.2) represent

the actual work that is done in a process. The simplest activity is a task that can be

understood as a single unit of work. A sub-process and a transaction are activities

that consists of a set of activities. Transaction additionally de�nes rollback and

compensation in case something goes wrong.

Figure 2.2: Activities

Events signalize that something happened in a process. In contrast to activities,

they have no duration. There are three groups of events: start, intermediate, and

end events, as represented in �gure 2.3. A start event starts the process, an end

event ends it, and an intermediate event can occur anywhere in the process between

start and end events. Additional markers in events can give them more meaning,

e.g. a clock marker that denotes a timer event.



2.1. BUSINESS PROCESS MODELING 11

Figure 2.3: Events

Gateways control the paths taken in a process and can split or merge the paths.

The most important gateways are shown in �gure 2.4. An exclusive gateway allows

a process instance to take only one path after the gateway. This gateway represents

a decision in a process. The gateway is mostly annotated with a condition and its

outcome (true or false) navigates the process instance to the right path. Inclusive

gateways di�er from exclusive in the fact that more than one path can be chosen.

A parallel gateway splits one path into many paths, where all paths are taken si-

multaneously. An event-based gateway is similar to the exclusive gateway with the

di�erence being that there is no decision at the gateway itself. The decision of which

path has to be taken depends on the �rst event that follows the gateway (e.g. message

arrived). Gateways that allow a process instance to take more than one path must

be merged carefully in order to avoid unwanted token multiplication in a process

instance.

Figure 2.4: Gateways



12 CHAPTER 2. BUSINESS PROCESS MANAGEMENT

Artifacts

Artifacts are used to model additional information besides the actual work and its

�ow through a process. There are three main artifacts: data objects, text annota-

tions, and groups as shown in �gure 2.5. Data objects represent the documents that

are relevant in a process, e.g. a form that has to be �lled out and approved in a

vacation approval process. Text annotations are used to provide more detailed infor-

mation that can not be packed in an activity, gateway, etc. They can be understood

as a comment. Groups are used to organize a process into sections of elements that

belong together.

Figure 2.5: Artifacts

Swimlanes

Swimlanes (pools and lanes) are used to organize a process model along collaborative

aspects. A pool represents a process participant that collaborates with another

participant (pool) in a process. Each participant has its own process that can interact

with other participants and their processes. A pool can be divided into lanes as shown

in �gure 2.6. Lanes can represent organizational units of an organization (e.g. sales,

accounting, etc.), roles (e.g. manager), technology, or something else that satis�es

the purpose of the model.

Figure 2.6: Swimlanes



2.1. BUSINESS PROCESS MODELING 13

Connecting objects

BPMN elements are connected by each other with connecting objects that are shown

in �gure 2.7. The sequence �ow that connects �ow objects and determines their order

in a process, is represented with an arrow. Message �ow de�nes the interaction and

the �ow of information between di�erent participants (pools) in a collaboration. It

is represented with a dashed arrow. Association is represented with a dotted line or

arrow and is used to connect artifacts to the rest of the the process, e.g. to represent

the data �ow.

Figure 2.7: Connectors

A very simple example of a BPMN process diagram is shown in �gure 2.8. It rep-

resents a procurement process from the buyer's perspective. The order has to be

approved �rst and if the outcome is positive, both the order and the shipment are

handled in parallel. Finally the order gets reviewed.

Figure 2.8: Example of a BPMN process model [OMG13]

A business process model is the input for the business process analysis. Business

process analysis is described in the following section.



14 CHAPTER 2. BUSINESS PROCESS MANAGEMENT

2.2 Business Process Analysis

Business process models, as well as business processes, can be improved with help

of business process analysis. There are two classes of analysis: model-based analysis

and data-based analysis. Model-based analysis takes place in the �rst phase of the

business process lifecycle - design and analysis - and is brie�y described in this

chapter. Data-based analysis is based on event logs that are generated by the system

during the process execution. Data-based analysis represents the last phase of the

business process lifecycle - evaluation - and forms the input for the following cycle

iteration. Examples of data-based analyses are business activity monitoring (BAM)

and process mining.[vdA13]

Model-based analysis can be categorized into three main approaches: validation,

veri�cation, and performance analysis.

Validation

Validation methods are used to validate if a business process model represents what

it should and if all possible process instances are covered by the model. A common

method to validate a model is a workshop, where di�erent stakeholders discuss a

given model. Simulation of process execution, including all relevant information

like execution probabilities of alternative paths, can be a useful method to support

validation with additional insights.[Wes07]

Veri�cation

Veri�cation techniques are used to check di�erent properties of a business process

model. These properties can relate to the process structure, data, temporal aspects,

or some other aspects that a model represents. Veri�cation of structural properties,

such as liveness and boundedness [Mur89], is typically performed on Petri nets due

to their formal foundation. Other process representations can be translated into

another, e.g. BPMN to Petri nets [DDO08, DDDGB08, Tsc06, RM06]. Based on

Petri nets, van der Aalst introduced work�ow nets [vdA96, vdA98]. Work�ow nets

can be used to verify the soundness property of a process model. A well known tool

for veri�cation of work�ow nets is Wo�an[VvdA00, VBvdA01].

Veri�cation of temporal properties will be addressed in detail in the next chapter.



2.2. BUSINESS PROCESS ANALYSIS 15

Performance analysis

Performance analysis aims to improve the e�ectiveness and e�ciency of a process.

The performance of a process is usually measured with time-, cost-, or quality-related

Key Performance Indicators (KPIs). Examples of time-related KPIs are lead time

(time from the process start to process end), service time (time it takes to complete

a case), waiting time (time it takes to get a free resource), or synchronization time

(e.g. waiting for activities from other branches to complete).

In many cases, time can be translated into costs directly. Other process aspects,

like resource utilization, are also a basis for cost-related KPIs. There are also di�er-

ent cost models, such as Activity Based Costing (ABC)[Kap87], that are based on

processes.

Quality is a little more di�erent to measure, since it is often subjective - e.g. in

a provided consulting service. Customer ratings, questionnaires, or number of com-

plaints can reveal a valuable information about the quality. In the �rst phase of the

business process lifecycle, where processes haven't been executed yet, performance

analysis can be done in a simulation environment.[vdA16]

This chapter provided an overview of business process management in general.

Business process modeling and analysis were described brie�y. The following chapter

delves deeper into one particular aspect of business process management - time.





Chapter 3

Business Process Time Management

A comprehensive process model includes the control-�ow perspective as well as other

perspectives like data, resource, function, and time perspective. The time perspective

gives an insight into essential temporal information about a process like activity

durations, deadlines, time lags between activities, etc.[vdA13]

The investigation of time perspective of business processes started back in the

1990's. Many �elds of time management evolved in the last decades, e.g. mod-

eling of temporal information [EP00, BWJ02b, CP03, CKGJ13, CGJ+07, MO99],

computation of time plans [EPR99, EEP06, LNCY11], scheduling [EPGN03, AF08,

BWJ00, Bus98, CP06, LKR13], time patterns [LWR09, LWR14], exception handling

[PWE09, vdARD05], temporal prediction [vdASS11], and others. A short overview

of the development of the �eld time management in business processes is given in

[EPR13].

This thesis will focus on design and analysis phase of the business process life cy-

cle, therefore modeling and analysis of the time perspective will be further discussed

in this chapter. An overview of widely observed time patterns in business processes

is given in section 3.1. Subsets of these patterns can be found in di�erent formal

representations of temporal aspects of business processes. We will brie�y describe a

selection of representations of temporal aspects and their veri�cation in section 3.2.

17



18 CHAPTER 3. BUSINESS PROCESS TIME MANAGEMENT

3.1 Business Process Time Patterns

In analogy to design patterns[GHJV93], van der Aalst et al. identi�ed recurring

constructs in business processes and developed a pattern framework1 regarding the

control-�ow, resource, data and exceptions handling perspective [vdATHKB03, RTHEvdA04,

RTHEvdA05, RvdAtH06]. Lanz et al. extended the framework with the time per-

spective. Time patterns that they identi�ed were repeatedly observed in di�erent

data sets from the healthcare, automotive, and other domains [LWR09, LWR10,

LRW13, LWR14, LRW16]. They categorized the resulting 10 patterns into four pat-

tern classes, which are listed in table 3.1.

Category I: Durations and Time Lags
TP1: Time Lags between two Activities
TP2: Durations
TP3: Time Lags between Arbitrary Events
Category II: Restricting Execution Times
TP4: Fixed Date Elements
TP5: Schedule Restricted Elements
TP6: Time-based Restrictions
TP7: Validity Period
Category III: Variability
TP8: Time-dependent Variability
Category IV: Recurrent Process Elements
TP9: Cyclic Elements
TP10: Periodicity

Table 3.1: Process time pattern catalogue[LWR14]

These patterns have not only been observed in selected data sets, but were de-

scribed in the literature as well. Lanz et al. provide a systematic literature review

regarding time patterns in [LWR14]. Table 3.2 shows their consolidated results.

The identi�ed patterns are brie�y described in following subsections.

1The collection of business process patterns as well as related publications is available at
www.workflowpatterns.com

www.workflowpatterns.com


3.1. BUSINESS PROCESS TIME PATTERNS 19

Research Group TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10
Bettini et al. X X X X
(e.g., [BWJ02a, BWJ02b])
Combi et al. X X X X X X X X X
(e.g., [CGJ+07, CP02])
Eder et al. X X X X
(e.g., [EPR99, EP00])
Li et al. X X X
(e.g., [LY05][LYC04])
Mans et al. X X X X X
(e.g., [MvdAR+09, MRvdA+10])
Marjanovic et al. X X X
(e.g., [Mar00, MO99])
Müller et al. X X
(e.g., [MR00, MGR04])
Sadiq et al. X X X X
(e.g., [SMO00, SO98])
Zhuge et al. X X X X
(e.g., [ZyCkP01, ZPC00])

Table 3.2: Consolidated results of the systematic literature review [LWR14]

3.1.1 Durations and Time Lags

The �rst time patterns category - durations and time lags - includes de�nitions of

allowed time units that an activity execution may or must take and time units that

may or must pass between di�erent activities.

Pattern TP1 encompasses di�erent time lags between two activities. Time lags

may di�er in their temporal restriction (minimal or maximal value or restricted time

interval) and starting and ending points of the lags. The starting point of a time lag

can be the start or the end of the �rst activity, and the ending point the start or the

end of the second activity.

An example of a minimal time lag between two activities is a blood test where a

patient must not eat anything for at least 8 hours before the blood is taken .

Pattern TP1 is known as the Lower and Upper Bound Constraint in [EPR99],

Inter-Task Constraint in [BWJ02b], and as the Relative Constraint in [CGJ+07].

Durations in processes are very similar to time lags and are consolidated in pattern

TP2. They can be applied to all kinds of process elements (activities, process models,

process instances) and may be restricted to a minimum, maximum, or allowed interval

of time units.

An example of constrained activity duration is an exam where students must stop

writing after a prede�ned amount of time, e.g. after 90 minutes.

Time lags between arbitrary events are covered by time pattern TP3. This pattern



20 CHAPTER 3. BUSINESS PROCESS TIME MANAGEMENT

is very similar to TP1, except that events don't have a duration, therefore the options

start-start, start-end, end-start, and end-end are irrelevant.

Patterns TP1, TP2, and TP3 from Durations and Time Lags pattern class are

illustrated in �gure 3.1.

Figure 3.1: Durations and Time Lags

3.1.2 Restricting Execution Times

Patterns TP4 to TP7 in the Restricting Execution Times category regulate the ear-

liest or latest execution or ending points of process elements.

Fixed Date Element in TP4 is used to specify the earliest start, latest start, or a

deadline of a process instance or an activity. For example, course assignments must

be submitted until Monday each week.

TP5 covers process elements that are restricted to a schedule. Examples of Sched-

ule Restricted Elements are activities or process instances that can only be executed

within de�ned opening hours or scheduled time points, e.g. a train will depart at

7:30.

TP6 represents time-based restrictions. These restrictions de�ne how often within

a given time interval an activity or a process instance is allowed to be executed. For



3.1. BUSINESS PROCESS TIME PATTERNS 21

example, in a social media platform, one can change the name only once every 60

days.

TP7 summarizes temporal restrictions of activities or process instances to a par-

ticular validity period. Only within the de�ned period the processes or activities may

be executed, otherwise their execution is invalid. Examples for this pattern are start-

ing and expiration dates of laws that are implemented in corresponding processes.

The processes/activities may only be executed while the law is valid.

3.1.3 Variability

This pattern class contains only pattern TP8 that represents time-depending pro-

cess or activity execution. Time dependent variability of control �ow means that

depending on particular temporal conditions di�erent paths in the process will be

taken. For example, one can drive or ride a bike from home to work but if it is not

possible to be on time by bike, the only way to come to work is by car. Eder et al.

investigated this pattern and provided the underlying formalism in [PEC17].

3.1.4 Recurrent Process Elements

The last pattern class deals with recurrent elements. Pattern TP9 describes time lags

between activities in a loop, while TP10 deals with periodic occurrences of an activity

at �xed times, e.g. every Monday at 10:00. The number of periodic occurrences in

TP10 can be unlimited or limited by a prede�ned number, an end date or by an exit

condition. Previous patterns, except TP7, can be combined to mimic TP10.

TP9 is a projection of TP1 to cyclic processes. Time lag can be restricted between

di�erent activities or between two occurrences of one activity in arbitrary iterations.

For example, a patient has to take a pill every 24 hours.

Recurrent Process Elements patterns are a �eld of research that still needs to be

thoroughly investigated. The research in scope of this thesis delivers an investigation

and underlying formalization of the pattern TP9. The starting point of this research

are Upper Bound Constraints (pattern TP1) that are being extended to cover cyclic

processes in chapter 4. Since pattern TP1 is the basis of the research in this thesis,

the underlying representation alternatives will be described in the following section.



22 CHAPTER 3. BUSINESS PROCESS TIME MANAGEMENT

3.2 Modeling and Veri�cation of Temporal Aspects

Previous section gave us an overview of time patterns in business processes and this

section complements it with selected approaches for specifying and verifying process

time perspective. Since the research in this thesis delivers one possible modeling

and veri�cation approach for the pattern TP9 (Cyclic Elements), only the main

alternative approaches behind TP1 (Time Lags between two Activities) that can be

used as a starting point for TP9 are described. An overview of a broader set of

modeling and veri�cation approaches can be found in [CKGJ13, CKGJ15].

3.2.1 Timed Work�ow Graph

Eder et al. adapted project network techniques Program Evaluation and Review

Technique (PERT) and Critical Path Method (CPM) as a formalism to represent

the time perspective in business processes in [EPL97]. Based on this adaption, Eder

et al. later introduced Timed Work�ow Graph (TWfG) in [EPR99]. TWfG is used as

the basis for formal representation for time constraint management in their research.

A Timed Work�ow Graph is a work�ow graph that extends activities with

temporal information. The activities in the simplest version of a TWfG contain

activity names, activity duration, earliest �nishing time, and latest �nishing time of

an activity. An example of such a TWfG is shown in �gure 3.2. This graph does

not contain conditional splits, only parallel splits. If we add conditional splits to

the underlying process graph, its TWfG gets more complex and contains additional

temporal information, like best and worst case scenarios of earliest and latest �nishing

times [EPPR99, EP00, EGP00]. In �gure 3.2, activity names are de�ned in upper left

corner of activities and activity durations (in time units) in the upper right corner.

The earliest possible �nishing times are placed in the lower left corner of activities

and the latest �nishing times in the lower right corner. The earliest �nishing times are

calculated forward by adding duration times, beginning with the starting activity.

The latest �nishing times are calculated backward by subtracting duration times,

beginning with the ending activity.

Together with Timed Work�ow Graph, Eder et al. introduced a set of time

constraints in [EPR99]: Fixed-Date Constraint, Lower Bound Constraint and Upper

Bound Constraint.



3.2. MODELING AND VERIFICATION OF TEMPORAL ASPECTS 23

Figure 3.2: Example of a Timed Work�ow Graph from [EPR99]

A Fixed-Date Constraint represents time pattern TP4 and de�nes a date on which

an activity may get executed. All other dates are invalid.

A Lower Bound Constraint lbc(A,B, δ) represents time pattern TP1 and limits

the minimal duration between the ending point of the source activity A and the

ending point of destination activity B to δ time units.

An Upper Bound Constraint ubc(A,B, δ) also represents time pattern TP1 and

limits the maximal duration between the ending point of the source activity A and

the ending point of destination activity B to δ time units.

A set of time constraints is said to be satis�able if there exists a work�ow execution

that satis�es all time constraints. A Timed Work�ow Graph (TWfG) with incorpo-

rated time constraints represents all such executions that satisfy all time constraints.

Those are the executions where all activities are completed at their earliest �nishing

times, or latest �nishing times, or within that interval. A TWfG satis�es a time

constraint if all valid executions that are represented by the TWfG satisfy the time

constraint. The satis�ability of a given set of time constraints in a TWfG is therefore

veri�ed by checking if the earliest and latest �nishing times of each activity in the

TWfG are valid regarding the given set of time constraints.



24 CHAPTER 3. BUSINESS PROCESS TIME MANAGEMENT

3.2.2 Work�ow Constraint Graph

The Work�ow Constraint Graph was introduced by Bettini et al. in [BWJ02b,

BWJ00]. In contrast to a Timed Work�ow Graph (TWfG), a Work�ow Constraint

Graph (WCG) is based on the formalism of temporal constraint networks[DMP91].

In a Work�ow Constraint Graph, a process activity is not represented only

by one node with additional temporal information, but with a pair of nodes that

symbolize the starting and the ending instant of an activity. The duration (minimal

and maximal) of an activity is represented by the edge that connects the activity

starting instant with the corresponding activity ending instant. Generally speaking,

in aWCG each edge between nodesX and Y labeled with an interval [m,n] represents

a time constraint that de�nes the minimal (m) and maximal (n) allowed temporal

distance between X and Y .

In a special type of time constraint called Temporal Constraint with Gran-

ularity (TCG), the interval with the minimal and maximal allowed temporal dis-

tance between two nodes is extended with the granularity, e.g. hours, business days

(b-days), months, etc. This granularity gives the bounds in the interval additional

temporal context.

Figure 3.4 demonstrates a Work�ow Constraint Graph that represents a procure-

ment process shown in �gure 3.3 with corresponding time constraints. Node names in

�gure 3.4 consist of initials that are derived from activity names in the procurement

process and end with the characters b or e. Character b stands for the beginning

of an activity (starting instant) and e for the ending (ending instant). The edges

in �gure 3.4 represent a set of time constraints, e.g. the edge between Bb and Be

with the label [0, 1]b − day constrains the duration of activity Billing to minimal

0 and maximal 1 business days. The edge between OPe and LDe with the label

[1, 2]b − day corresponds to a Lower and an Upper Bound Constraint in a Timed

Work�ow Graph. It constrains the local delivery of ordered items to earliest 1 busi-

ness day after the order has been processed and latest 2 business days after. An edge

with the label < is an edge that speci�es the chronological order of the activities

without any speci�c time constraints.

A property that determines if it is possible to satisfy all time constraints in a

given Work�ow Constraint Graph is called inconsistency-freeness. A WCG is said

to be inconsistency-free if each possible execution thread (with only one path



3.2. MODELING AND VERIFICATION OF TEMPORAL ASPECTS 25

Figure 3.3: Procurement Process

Figure 3.4: Procurement Process WCG
(adapted from [BWJ02b])

following an OR-operator) is consistent. The checking of this property is done by 1)

decomposing a given WCG to subgraphs called constraint networks, where each such

network represents a possible execution thread, and 2) checking if each obtained

constraint network is consistent. A constraint network is consistent if it has a

solution in terms of a Simple Temporal Problem (STP)[DMP91] (in work�ow terms:

if it can be executed without violation of any constraint).

Temporal constraint networks have also been used as the underlying formalism for

temporal work�ow veri�cation by Combi et al.[CGJ+07]. Their approach is described

in the next section.



26 CHAPTER 3. BUSINESS PROCESS TIME MANAGEMENT

3.2.3 Temporal Work�ow

Combi et al. use temporal work�ows to model a process including relevant temporal

information [CP03, CGJ+07]. Their conceptual model is based on the atemporal

model introduced by Casati et al.[CCPP95]. Graphically, they extend BPMN with

additional temporal information as shown in �gure 3.5. Temporal information in-

cluded in their conceptual model is classi�ed in events, durations and delays, and

temporal constraints.

Events indicate time instants that may occur during the process execution. Du-

rations and delays represent a temporal distance between a starting and ending

instant of an activity (duration) or an edge (delay). In contrast to Eder et al.,

where edges do not have any delay and the durations of activities are �xed, Combi

et al. allow durations and delays to move �exibly within given minimal and maximal

bounds. Furthermore, the time granularity can be explicitly speci�ed like in the

model of Bettini et al. described in previous section.

Combi et al. divide temporal constraints into three classes: relative constraints,

absolute constraints, and periodic constraints.[CGJ+07]

A Relative Constraint limits the time distance between two activities to a min-

imum or maximum range and corresponds to Lower and Upper Bound Constraint

introduced by Eder et al. described earlier in this chapter. In contrast to Eder et

al., Combi et al. allow the Lower or Upper bound Constraint to be de�ned between

starting or ending instant of the source activity and starting or ending instant of

the destination activity. This is necessary since they also allow the duration of an

activity to vary within the given minimal and maximal limits. Relative Constraints

represent time pattern TP1.

An Absolute Constraint de�nes a time interval during which an activity is allowed

(or not allowed) to be executed. The time interval is bounded by two timestamps.

A Periodic Constraint also de�nes a time interval during which an activity is

allowed to be executed, however the time interval is periodic, e.g. an activity can be

executed between Monday and Friday every week.



3.2. MODELING AND VERIFICATION OF TEMPORAL ASPECTS 27

Figure 3.5 shows a temporal work�ow graph of an ST-segment Elevation My-

ocardial Infarction diagnosis and treatment process with corresponding temporal

information. On the bottom of each activity, its allowed duration in a given granu-

larity is de�ned. First activity T1 (Admission to Emergency Department) can last

between 2 and 4 minutes. The delay (noted on the edge) between the �rst activity

T1 and the succeeding activity T2 (Initial patient evaluation) can last between 1

and 5 minutes. Between activity T2 and T3, there are not only minimal and max-

imal allowed delays that have to be obeyed, but also a relative temporal constraint

ET2[1, 20]ET3min. This constraint requires the �nishing of T3 to happen between

1 and 20 minutes after the �nishing of T2. Relative Constraint ST4[−1, 2]ET5min
between parallel activities T4 and T5 includes a negative integer -1 and 2 as the

allowed bounds. Those bounds require the patient to take Beta Blocker (T5) at the

beginning of the one hour long Reperfusion Fibrinolytic therapy (T4). More pre-

cisely, T4 must end somewhere between 1 minutes before or 2 minutes after the start

of the therapy T5.[CP09]

Figure 3.5: Temporal Work�ow Graph [CP09])

Combi et al. use temporal consistency and controllability checking to verify

temporal work�ows [CGPP12, CP09].

Consistency of a temporal work�ow schema is ful�lled if each work�ow path

(wf-path), derived from the work�ow schema, is consistent. A wf-path is consistent

if at least one assignment of start and end instants of activities exist, for which all

temporal constraints in this wf-path are satis�able.[CGPP12]



28 CHAPTER 3. BUSINESS PROCESS TIME MANAGEMENT

To check the consistency of a temporal work�ow, Combi et al. �rst decompose it

into wf-paths. A wf-path represents a possible work�ow execution (conditional/al-

ternative split connector has only one successor). In each wf-path the granularities

of temporal constraints are transformed into �nest possible granularity. In the next

step, each wf-path is transformed into Simple Temporal Problem (STP), in which

the consistency check is performed as described in [DMP91].

Controllability is a stronger property than consistency and also considers the

contingent nature of durations of those tasks that cannot be in�uenced by the agent

(contingent links). In general, in a controllable temporal work�ow it is possible to

satisfy all temporal constraints for any possible duration of contingent links.[CP09,

CP10, CGMP12]

In context of temporal constraint networks, Vidal et al. [Vid99, Vid00] distinguish

between strong, weak, and dynamic controllability. Strong controllability ensures the

existence of one universal solution that �ts all possible durations of all contingent

links. In contrast to strong controllability, weak controllability ensures the existence

of a solution for each possible duration of a contingent link. Such a solution is not

universal and does not necessarily �t di�erent durations of contingent links. While

strong controllability is suitable if the work�ow execution situation is totally un-

known, weak controllability is suitable if the execution situation is totally known. In

a situation where the execution situation is partially known (e.g. runtime), dynamic

controllability becomes very interesting. Dynamic controllability ensures that at any

point in time during a work�ow execution an agent can make decisions depending on

observed execution (and observed durations of contingent links) without preventing

any of the possible durations of upcoming contingent links.[Vid99, Vid00]

In [CP09, CP10], Combi et al. show how the controllability concept can be used in

temporal work�ows. For controllability checking, Combi et al. translate a temporal

work�ow into a Simple Temporal Network with Uncertainty (STNU), introduced by

Morris et al. in [MMV01, MM05], or a Conditional Simple Temporal Network with

Uncertainty (CSTNU), introduced by Hunsberger et al. in [HPC12]. A CSTNU

combines a STNU with the Conditional Simple Temporal Problem and thus makes

it suitable as an underlying formalism for work�ows with conditional nodes (XORs).

Some controllability checking algorithms can be found in [MMV01, MM05, CHP13,

LPCR13, CHM+14, CP18].



3.3. CYCLE HANDLING OVERVIEW 29

3.3 Cycle Handling Overview

In the previous section a selection of formal representations of temporal aspects in

business processes and their veri�cation was described. All temporal process repre-

sentations have one shortcoming in common: they don't handle loops comprehen-

sively.

In the literature, loops are mostly not handled at all (e.g. [LSPG06, EGP00]),

handled as a complex activity (e.g. [Mar00, BWJ00]), or rolled out into a sequence

(e.g. [SKK05]).

Combi et al. propose a more advanced approach of loop handling - a translation

of loops and related temporal constraints into conditional blocks (XORs) [CGPP12,

CGMP12, LPCR13, CGMP14]. Rewriting loops into conditional blocks o�ers an

adequate handling of loops and related temporal constraints, however the authors

meet several restrictions to be able to handle the complexity that arises with loops.

They limit the maximum number of loop iterations already in the process model

as well as the variety of temporal constraints to only such constraints that consider

cyclic elements between two directly succeeding iterations [LPCR13] or the same

iteration [CGPP12].

In [Pic06], Pichler introduced an advanced loop handling approach that allows

the handling of unbounded loops. The author assigns branching probabilities to

work�ow graphs and uses this information to transform a cyclic work�ow graph into

an acyclic graph called a Probabilistic Unfolded Work�ow Graph. To prevent an

in�nite growth of the graph, graph expansion stops when the probability of missing

cases is below a certain threshold.

Pichler et al. introduce another interesting approach that considers loops in

[PEC17]. They introduce temporal splits and temporal loops that use temporal

conditions to decide which branch in a split will be taken or if a loop can be entered.

An example of such a temporal condition attached to a temporal loop is elapsed <

100. Such loop can only be entered if less than 100 time units passed since the

process instance got started.



30 CHAPTER 3. BUSINESS PROCESS TIME MANAGEMENT

In the literature, loops are mostly mentioned as the part of the business process

that is not the focus of the work. The intention of this thesis is to close this gap

and to focus solely on loops. Our contribution is described in following chapters that

are the essence of this thesis. They add new knowledge to the �eld modeling and

analysis of time perspective of business processes with loops.

We �rst introduce Extended Time Constraints for modeling time information in

processes with loops in chapter 4. Then we describe a technique for checking the

process termination property in chapter 5. This property states that a process with

loops can not get stuck in an in�nite loop without violating at least one (Extended)

Time Constraint related to the process. A prototypical implementation in chapter 6

shows the feasibility of termination property checking.



Chapter 4

Extended Time Constraints for

Cyclic Processes

Cyclic processes are very common in the industry, however, there is still a lack of

adequate modeling and veri�cation of time constraints in cyclic processes. In this

chapter, we introduce Extended Time Constraints (ETC) that extend well known

Upper Bound Constraints and Lower Bound Constraints, introduced by Eder et al.

[EPPR99]. Upper Bound and Lower Bound Constraints can only be de�ned on

acyclic processes, whereas Extended Time Constraints can also be de�ned on cyclic

processes.

With the introduced Extended Time Constraints, we cover typically required

time constraints in cyclic processes. An example that requires compliance with such

Extended Time Constraints is the energy supplier change process in the deregulated

Austrian energy market. This interorganizational process, including all time con-

straints, is de�ned in the speci�cation of the energy market communication [Lie18].

This speci�cation represents the implementation of the legal regulation regarding

energy supplier switching [Bun14].

Figure 4.1 shows a simpli�ed process of customer switching between various en-

ergy suppliers. The process involves the following actors: customer (white activities),

current energy supplier (blue activity), new energy supplier (green activities), and

distribution network operator (orange activities). All process activities, loops, and

time constraints are described below and they are additionally listed in tables 4.1,

4.2, and 4.3 for easier process understanding.

31



32 CHAPTER 4. EXTENDED TIME CONSTRAINTS

Figure 4.1: Energy supplier switch process in deregulated Austrian energy market
(derived from the speci�cation of the energy market communication [Lie18])



33

Activities
ID Name/Description Actor
CS1 Choose supplier and consume energy. Customer
CS2 Change supplier. Customer
ED1 Enter data and start ZPID. New energy supplier

ZPID
Identify customer and his/her Meter Point Administration Number
(MPAN).

Distribution network operator

ED2 Enter data and start BINKUN. New energy supplier
BINKUN Determine customer's binding period and notice period. Current energy supplier
ED3 Enter data and start WIES. New energy supplier

WIES
Switch the old energy supplier to the new one and distribute all
relevant switch information to all involved market participants.

Distribution network operator

SS Start supply and notify customer. New energy supplier
CE Consume energy. Customer
UC Notify the new supplier to undo the change process. Customer

Table 4.1: Activities in deregulated energy market

Loops
ID Description
L1 A customer can choose any Austrian energy supplier from the market and change it any time.

L2
If the answer of the distribution network operator does not return the customer's MPAN,
the new energy supplier can repeat the MPAN identi�cation steps for any possible variation
of customer's data.

L3 ED2 and BINKUN can be repeated until binding and notice period elapsed.

Table 4.2: Loops in deregulated energy market

Extended Time Constraints
ID De�nition and Description

TC1

(TC1, UBC, 1, EACH ED1, FIRST RELATIVE ZPID)

TC1 constrains the time span between an occurrence of the activity ED1 and �rst succeeding occurrence
of the activity ZPID to a maximum of 1 day (24 hours).

TC2

(TC2, UBC, 21, FIRST ED1 WITHIN L2, FIRST RELATIVE SS)

Initiation of supplier change o�cially starts with the �rst ZPID initiation by the new energy supplier
(activity ED1) or with WIES initiation (activity ED3) if there is no need to query the customer's MPAN �rst.

TC3

(TC3, UBC, 1, EACH ED2, FIRST RELATIVE BINKUN)

The actual switch of the energy supplier WIES can start after the customer and the corresponding MPAN
have been determined, and the current supplier has con�rmed that the customer's binding and notice period
have elapsed, and thus the customer can switch to another energy supplier. Binding and notice period
are delivered via market process BINKUN and may take at most 24 hours (1 day)

TC4

(TC4, UBC, 3, EACH ED3, FIRST RELATIVE WIES)

The actual supplier switch subprocess (activity WIES) must be completed by the distribution network
operator within 72 hours after the new supplier has initiated the processes as modeled by TC4.

TC5

(TC5, UBC, 21, EACH ED3, FIRST RELATIVE SS)

Initiation of supplier change o�cially starts with the �rst ZPID initiation by the new energy supplier
(activity ED1) or with WIES initiation (activity ED3) if there is no need to query the customer's MPAN �rst.

TC6

(TC6, UBC, 14, EACH SS, FIRST RELATIVE UC WITHIN L1 SAME_ITERATION L1)

However, according to the regulation, the customer can disagree with the contract within the
next 14 days and switch back to the old energy supplier without any consequences (activity UC).

Table 4.3: Extended Time Constraints in deregulated energy market



34 CHAPTER 4. EXTENDED TIME CONSTRAINTS

The process starts with customer's energy demand. A customer can choose any

Austrian energy supplier from the market and can also change it any time as modeled

by the �rst loop L1. If a customer has decided to change the energy supplier and

requests a contract from a new supplier, the new supplier needs the customer's

Meter Point Administration Number (MPAN) in order to complete the contract.

The MPAN identi�es a unique point (meter point) to which energy suppliers deliver

energy.

According to the market communication speci�cation, customers should be able

to switch to a new energy supplier even if they do not know their MPAN. In this

case, the new energy supplier must �nd out the customer's MPAN. This is done

by entering customer's data into the system (activity ED1) and by initiating the

MPAN identi�cation process (ZPID) via market communication. If the customer's

data doesn't perfectly match with the data of the distribution network operator, the

operator must manually search for the corresponding MPAN.

The answer (MPAN or no result) must be sent back to the new energy supplier

within 24 hours as required by the market communication speci�cation. This tem-

poral requirement is modeled by Extended Time Constraint (TC1, UBC, 1, EACH

ED1, FIRST RELATIVE ZPID). TC1 constrains the time span between an occurrence

of the activity ED1 and �rst succeeding occurrence of the activity ZPID to maxi-

mum 1 day (24 hours).

If the answer of the distribution network operator does not return the customer's

MPAN, the new energy supplier can repeat the MPAN identi�cation steps for any

possible variation of customer's data, as modeled by loop L2.

The actual switch of the energy supplier WIES can start after the customer

and the corresponding MPAN have been determined and the current supplier has

con�rmed that the customer is not violating any binding or notice period and can

thus switch to another energy supplier. Binding and notice periods are delivered via

market process BINKUN and may take at most 24 hours (1 day), as modeled by the

ETC (TC3, UBC, 1, EACH ED2, FIRST RELATIVE BINKUN). ED2 and BINKUN

can be repeated as often as needed, as modeled by the loop L3.

The actual supplier switch subprocess (activityWIES) must be completed by the

distribution network operator within 72 hours after the new supplier has initiated the

processes, as modeled by (TC4, UBC, 3, EACH ED3, FIRST RELATIVE WIES). The



4.1. BASIC MODELS AND DEFINITIONS 35

subprocess WIES includes activities such as authority check, process overlapping

check, assignment of the new energy supplier to the given MPAN, and several others.

The market communication speci�cation requires that the customer must be able

to start consuming the energy from the new supplier in less than three weeks after

he/she has initiated the supplier change. Initiation of a supplier change o�cially

starts with the �rst ZPID initiation by the new energy supplier (activity ED1), or

with WIES initiation (activity ED3) if there is no need to query the customer's

MPAN �rst. This requirement is modeled by ETCs (TC2, UBC, 21, FIRST ED1

WITHIN L2, FIRST RELATIVE SS) and (TC5, UBC, 21, EACH ED3, FIRST RELA-

TIVE SS).

Finally, the customer starts consuming energy from the new supplier (activity

CE). However, according to the regulation, the customer can disagree with the

contract within the next 14 days and switch back to the old energy supplier without

any consequences (activity UC), as modeled by the ETC (TC6, UBC, 14, EACH SS,

FIRST RELATIVE UC WITHIN L1 SAME_ITERATION L1).

The previous example of an energy supplier switch in the deregulated Austrian

energy market demonstrates that there is a need for Extended Time Constraints

speci�cation in processes with loops. In this chapter, the underlying basic models

will be de�ned in section 4.1 and a formal speci�cation of Extended Time Constraints

will be developed in section 4.2.

4.1 Basic Models and De�nitions

In the following sections, we de�ne the basic models that we use as a basis for

Extended Time Constraints speci�cation and for time management in processes with

loops. The starting point is a cyclic process graph. Based on a process graph, we

de�ne a special form of a process graph - a Loop Instance Type (LIT). In an LIT, each

cycle from the process graph is resolved in one or many XOR-blocks. Therefore, an

LIT is always acyclic. Furthermore, we de�ne an Instance Type, which is a subgraph

of an LIT starting with the same start node and ending with the same end node. In

an Instance Type, each decision node (XOR-split or LOOP-XOR-split) has only one

direct successor instead of two.



36 CHAPTER 4. EXTENDED TIME CONSTRAINTS

4.1.1 Process Graph

A process graph is the starting point for Extended Time Constraints and is de�ned

as follows:

De�nition 4.1. (Process Graph (P)) A process graph P is a directed graph P =

(NP , EP ) that consists of nodes NP and edges EP . Each node x ∈ NP has a unique

label x.Label and a node type x.Type. There are nine types of nodes in a P :

• activity node (x.Type = ACT )

• AND-split (x.Type = AS)

• AND-join node (x.Type = AJ)

• XOR-split (x.Type = XS)

• XOR-join node (x.Type = XJ)

• LOOP-split (x.Type = LS)

• LOOP-join node (x.Type = LJ)

• LOOP-XOR-split node (x.Type = LXS)

• LOOP-XOR-join node (x.Type = LXJ).

A directed edge (x, y) ∈ EP connects two nodes x ∈ NP and y ∈ NP . x is

called a direct predecessor of y and y is called a direct successor of x. An edge

(c, y) ∈ EP that follows a conditional node c ∈ NP with c.Type=XS, c.Type=LXS

or c.Type=LS is designated as a true-edge (c, y, T ) if it is triggered in case that the

node condition applies or as a false-edge (c, y, F ) if it is triggered in case that the

node condition does not apply.

Each process graph P starts with one start activity node s ∈ NP with an indegree1

deg−(s) = 0 and ends with one end activity node e ∈ NP with an outdegree deg+(e) =

0. Each activity node a ∈ NP that is not a process start or end node, has an

indegree deg−(a) = 1 and an outdegree deg+(a) = 1. Each split node s ∈ NP with

s.Type=AS, s.Type=XS, or s.Type=LXS has an indegree deg−(s) = 1 and an

outdegree deg+(s) = 2. Each join node j ∈ NP with j.Type=AJ , j.Type=XJ , or

1The indegree deg−(x) of a node x ∈ NP is the number of ingoing edges and the outdegree
deg+(x) of a node x ∈ NP is the number of outgoing edges.



4.1. BASIC MODELS AND DEFINITIONS 37

j.Type=LXJ has an indegree deg−(j) = 2 and an outdegree deg+(j) = 1. Each

LOOP-split node ls ∈ NP with ls.Type=LS has an indegree deg−(ls) = 2 and an

outdegree deg+(ls) = 2. Each LOOP-join node lj ∈ NP with lj.Type=LJ has an

indegree deg−(lj) = 1 and an outdegree deg+(lj) = 1. The only outgoing edge of a

LOOP-join node connects it with its counterpart LOOP-split node.

Each process graph P adheres to the conformance class full-blocked, where each

split-node has a counterpart join-node and each outgoing path of a split node goes

through the counterpart join node.

Figure 4.2 shows an example of a (cyclic) process graph. This process graph

consists of 8 activity nodes (A, B, C, D, E, F , G, and H), 8 gateway nodes (XS1,

XJ1, LS1, LJ1, LS2, LJ2, AS1, and AJ1), and the connecting edges. Nodes XS1,

LS1, and LS2 are conditional nodes (XOR-split and LOOP-split nodes), therefore

the outgoing edges have the labels T and F that mark the edges as true- and false-

edges. The process graph starts with the start node A and ends with the end node

H.

Figure 4.2: Example of a process graph

On a process graph, we de�ne several predicates and functions (predecessor, suc-

cessor, indegree, outdegree, path, etc.) that we later use to de�ne a Loop Instance

Type, an Instance Type, Extended Time Constraints, and Atomic Time Constraints.



38 CHAPTER 4. EXTENDED TIME CONSTRAINTS

Direct predecessor and direct successor

In a process graph P , a node x ∈ NP is called a direct predecessor of y and y is

called a direct successor of x, i� there is an edge (x, y) ∈ EP between x and y:

dpred(x, y, P ) := x, y ∈ NP ∧ (x, y) ∈ EP

dsucc(x, y, P ) := x, y ∈ NP ∧ (y, x) ∈ EP

For example, in �gure 4.2, node E is a direct successor of AND-split node AS1 and

a direct predecessor of AND-join node AJ1.

Indegree and outdegree

The number of ingoing edges into a node x ∈ NP is called the indegree deg−(x), and

the number of outgoing edges is called the outdegree deg+(x). Functions indeg(x, P )

and outdeg(x, P ) return the indegree and outdegree respectively for the node x from

the process graph P :

indeg(x, P ) := |{x, i ∈ NP |dpred(i, x)}|

outdeg(x, P ) := |{x, o ∈ NP |dsucc(o, x)}|

The indegree of the AND-split node AS1 in �gure 4.2 is 1 and the outdegree of the

same node is 2, since it has two direct successors.

Start and end node

Each process graph P starts with one start node s ∈ NP with an indegree indeg(s, P ) =

0 and ends with one end node e with an outdegree outdeg(e, P ) = 0 such that the

following applies:

start(s, P ) := s ∈ NP ∧ @x(x ∈ NP ∧ dpred(x, s, P ))

end(e, P ) := e ∈ NP ∧ @x(x ∈ NP ∧ dsucc(x, e, P )).

In �gure 4.2, node A has no ingoing edges (indegree 0) and is therefore the starting

node of the process graph. Respectively, node H is the end node of the process, since

it has no outgoing edges (outdegree 0).



4.1. BASIC MODELS AND DEFINITIONS 39

Path

Two nodes xi and xk are connected with a path if the following applies:

path(xi, xk, P ) := xi, xk ∈ NP ∧ i, k ∈ N ∧ i > 0 ∧ k > 1 ∧
(dpred(xi, xk, P ) ∨ path(xi, xk−1, P ) ∧ dpred(xk−1, xk, P ))

The predicate path(xi, xk, P ) recursively checks if there is a sequence of edges that

connects the �rst path node xi with the last path node xk. Two nodes xi and xk are

connected with a non-loop path (a path without any edges that connect a LOOP-join

with a LOOP-split node) if the following applies:

nlpath(xi, xk, P ) := xi, xk ∈ NP ∧ i, k ∈ N ∧ i > 0 ∧ k > i ∧
(dpred(xi, xk, P ) ∧ ¬(xi.T ype=LJ ∧ xk.T ype=LS)
∨ path(xi, xk−1, P ) ∧ dpred(xk−1, xk, P ) ∧ ¬(xk−1.T ype=LJ ∧ xk.T ype=LS))

In �gure 4.2, there is a path between node A and node B, since there is a sequence

of edges (A→XS1, XS1→LS1, LS1→B) that connects them. This path is also a

non-loop path, since none of the edges that connect A and B is an edge between a

LOOP-join node and a LOOP-split node. There is also a path between C and H,

e.g.: C→LJ2, LJ2→LS2, LS2→LJ1, LJ1→LS1, LS1→XJ1, XJ1→H. However,

this path is not a non-loop path, since the sequence of edges in this path consists

of two edges between a LOOP-join node and a LOOP-split node (LJ2→LS2 and

LJ1→LS1).

Predecessor and Successor

Each node x, for which there exists a path from x to y, is a predecessor of the node

y and y is a successor of the node x:

pred(x, y, P ) := x, y ∈ NP ∧ path(x, y, P )

succ(y, x, P ) := x, y ∈ NP ∧ path(x, y, P )

Each node x, for which there exists a non-loop path from x to y, is a non-loop

predecessor of the node y and y is a non-loop successor of the node x:



40 CHAPTER 4. EXTENDED TIME CONSTRAINTS

nlpred(x, y, P ) := x, y ∈ NP ∧ nlpath(x, y, P )

nlsucc(y, x, P ) := x, y ∈ NP ∧ nlpath(x, y, P )

In �gure 4.2, A is a predecessor of B, but also C is a predecessor of B, since there

is a path between C and B: C→LJ2, LJ2→LS2, LS2→LJ1, LJ1→LS1, LS1→B.
Note that C is also a successor of B, as well as H is a successor of B. However, C

is not a non-loop predecessor of B, nor is H a non-loop successor of B.

Topological order

We introduce the operator < to describe the topological order of the nodes. The

operator < is de�ned as follows:

(x < y) ∧ x, y ∈ NP ⇔ path(x, y, P ).

The topological order of nodes on a non-loop path is denoted with <nl and de�ned

as follows:

(x <nl y) ∧ x, y ∈ NP ⇔ nlPath(x, y, P ).

In �gure 4.2, the following topological order can be observed: B < C. However,

C < B is also true, whereas C <nl B is not true.

Counterpart

Each process graph P must adhere to the conformance class full-blocked. In a full-

blocked process graph, each split-node has a counterpart join-node, and each out-

going path of a split node goes through the corresponding counterpart join node.

An AND-block starts with an AND-split node and is closed with its counterpart

AND-join node. Respectively, an XOR-block/LOOP-block/LOOP-XOR-block starts

with an XOR-split/LOOP-split/LOOP-XOR-split node and ends with its counter-

part XOR-join/LOOP-join/LOOP-XOR-join node. The counterpart of an activity

is the activity itself.

Node c is the counterpart node of node x in process graph P if the following applies:



4.1. BASIC MODELS AND DEFINITIONS 41

counterpart(c, x, P ) := c, x ∈ NP ∧ (

(x.Type=ACT ∧ c.Type=ACT ∧ x = c) ∨

(x.Type=LS ∧ c.Type=LJ ∧ dpred(c, x, P )) ∨

(x.Type=LJ ∧ c.Type=LS ∧ dsucc(c, x, P )) ∨

((x.Type=LXS ∧ c.Type=LXJ ∨ x.Type=XS ∧ c.Type=XJ ∨
x.Type=AS ∧ c.Type=AJ) ∧ x <nl c ∧
|{s ∈ NP |s.Type = x.Type ∧ succ(s, x, P ) ∧ pred(s, c, P )}| =
|{j ∈ NP |j.Type = c.Type ∧ succ(j, x, P ) ∧ pred(j, c, P )}|) ∨

((x.Type=LXJ ∧ c.Type=LXS ∨ x.Type=XJ ∧ c.Type=XS ∨
x.Type=AJ ∧ c.Type=AS) ∧ c <nl x ∧
|{s ∈ NP |s.Type = c.Type ∧ pred(s, x, P ) ∧ succ(s, c, P )}| =
|{j ∈ NP |j.Type = x.Type ∧ pred(j, x, P ) ∧ succ(j, c, P )}|)

In �gure 4.2, the counterpart of XS1 is XJ1 (and vice versa), the counterpart of

AS1 is AJ1, LS1 is the counterpart of LJ1, and LS2 is the counterpart of LJ2. LJ2

is not a counterpart of LS1. The counterpart of B is B itself.

Loop block

In subsection 4.1.2 we de�ne a Loop Instance Type - an acyclic process graph derived

from a given (cyclic) process graph. The evaluation of whether or not a node is

located in a given loop helps us to de�ne a Loop Instance Type.

A node x ∈ NP is located within a LOOP-block that starts with the LOOP-split

node s ∈ NP if the following applies:

inLoop(x, s, P ) := x, s, j ∈ NP ∧ (s <nl x < j)

∧ s.Type = LS ∧ j.Type = LJ ∧ counterpart(s, j, P )
∧ ¬(∃(s, n, F ),∀(p, q)(n, p, q ∈ NP ∧ (s, n, F ), (p, q) ∈ EP

∧ p.Type 6= LS ∧ p < x ∧ n < q))

In �gure 4.2, C is both in the loop that starts with the split node LS1 and in the

loop that starts with the split node LS2, while B is only in the loop that starts with

LS1. A, D, E, F , G, and H are neither in loop LS1 nor in loop LS2.



42 CHAPTER 4. EXTENDED TIME CONSTRAINTS

To determine if node l ∈ NP is the split node of the most inner loop a node x ∈ NP

is placed in, we de�ne the following predicate:

closestLoop(l, x, P ) := l, x ∈ NP ∧ l.T ype = LS ∧ l <nl x ∧
@k(k ∈ NP ∧ k.Type = LS ∧ (l <nl k <nl x))

In �gure 4.2, LS2 is the closest loop C is in, and LS1 is the closest loop B is in.

Other activities are not placed in loops at all.

The process graph and related predicates and functions that we introduced in this

section are the starting point for Loop Instance Types and Instance Types. Loop

Instance Types and Instance Types are derived from a process graph and are needed

for Extended Time Constraints de�nition in our research. Loop Instance Type is

introduced in the next section.

4.1.2 Loop Instance Type

A Loop Instance Type (LIT) is an acyclic process graph, derived from a cyclic process

graph, where loops (cycles) have been transformed to one or many nested so called

LOOP-XOR-blocks (XOR-blocks derived from a loop). We use a Loop Instance Type

as a basis to de�ne an Instance Type which we then use to de�ne the semantic of

Extended Time Constraints.

A Loop Instance Type L of a process graph P is a directed acyclic process graph

such that for each node x ∈ NP , except LOOP-split and LOOP-join nodes, there is

at least one node x′ ∈ NL such that x.Label = x′.Label ∧ x.Type = x′.T ype. Each

LOOP-block from P is transformed to at least one LOOP-XOR-block in L. The node

types LS and LJ from P are transformed into types LXS (LOOP-XOR-split) and

LXJ (LOOP-XOR-join) in the derived LIT. We say that x′ ∈ NP ′ is the equivalent

node of x ∈ NP , where P ′ is a process graph derived from P (e.g. a Loop Instance

Type):

equi(x, x′, P, P ′) := x ∈ NP ∧x′ ∈ NP ′ ∧x.Label = x′.Label∧ (x.Type = x′.T ype

∨ (x.Type=LS ∧ x′.T ype=LXS) ∨ (x.Type=LJ ∧ x′.T ype=LXJ))



4.1. BASIC MODELS AND DEFINITIONS 43

There can be a set of equivalent nodes that were derived from the same node in the

underlying process graph. We introduce the Loop Counter Vector (LCV), which

makes each of the derived equivalents with the same label in a Loop Instance Type

or Instance Type unique.

Each node n′ ∈ NP ′ in a Loop Instance Type or Instance Type has a Loop Counter

Vector n′.LCV that is de�ned as follows:

De�nition 4.2. (Loop Counter Vector (LCV )) A Loop Counter Vector n′.LCV

of a node n′ ∈ NP ′ is a k-tuple (cn
′
LS1

, cn
′
LS2

, · · · , cn′
LSk

) where each scalar component

cn
′
LSi
∈ N0 denotes an iteration counter of the corresponding LOOP-block, indicated

by a LOOP-split node l ∈ NP ∧ l.T ype = LS ∧ l.Label = LSi for the node n
′.

A n′.LCV of a node n′ ∈ NP ′ contains one scalar component cn
′
LSi

for each LOOP-

split node l ∈ NP ∧ l.T ype = LS ∧ l.Label = LSi, thus the number of dimensions of

a n′.LCV is the number of loops in a process graph P : d = |{l|l ∈ NP ∧ l.T ype =

LS}|. The default value of a n′.LCV of a node n′ ∈ NP ′ is (c1, c2, · · · , ck), where
∀ki=1i : ci = 0 and k is the number of loops in the process graph P .

We de�ne the function lc(n′, LSi, P
′) that returns the scalar component cn

′
LSi

(the

loop counter of the loop with label LSi) from the Loop Counter Vector n′.LCV of

the node n′ ∈ NP ′ :

lc(n′, LSi, P
′) := cn

′
LSi

Figure 4.3 shows a Loop Instance Type L that was derived from the process

graph P in �gure 4.2. The LIT L di�ers from P only in the upper "true"-part of the

XOR-block. In this part, the two LOOP-blocks from P were transformed into three

LOOP-XOR-blocks. There is one LOOP-XOR-block in L for the �rst LOOP-block

starting with LS1 in P and two LOOP-XOR-blocks for the second LOOP-block

starting with LS2 in P . Therefore all nodes from P except LXS2, C, and LXJ2

have one equivalent node in L that was derived from its origin in P . This particular

LIT L has two nested LOOP-XOR-blocks starting with LXS2 that represent two

possible iterations of the LOOP-block starting with LS2 in P . As a consequence,

nodes with labels LXS2, C, and LXJ2 appear twice in L. However, these nodes

can be uniquely addressed thanks to their Loop Counter Vectors.



44 CHAPTER 4. EXTENDED TIME CONSTRAINTS

Each node in LIT in �gure 4.3 has a Loop Counter Vector (LCV) placed in the

lower right corner or somewhere near the node. All nodes except the nodes between

LXS1 and LXJ1 have an LCV (0,0), since they do not appear in any LOOP-block,

and therefore their iteration counters of surrounding loops can only have the default

value 0. A loop iteration is being counted after a loop has been entered, meaning

its LOOP-split node has been passed. This can be observed for activity B with

the LCV (1,0) that denotes that this B is executed in the �rst iteration of the �rst

LOOP-block starting with LS1. The �rst occurrence of activity C with the LCV

(1,1) is executed in the �rst iteration of the �rst LOOP-block starting with LS1

and the �rst iteration of the second LOOP-block starting with LS2 that is nested

in the �rst LOOP-block. The second occurrence of activity C with the LCV (1,2)

is executed in the �rst iteration of the �rst LOOP-block and the second iteration of

the second LOOP-block.

Figure 4.3: Example of a Loop Instance Type



4.1. BASIC MODELS AND DEFINITIONS 45

There is an in�nite set of Loop Instance Types for each (cyclic) process graph

P . Figure 4.3 shows only one possible LIT, derived from P , which has one possible

iteration of the �rst loop and two possible iterations of the second loop. Since we

deal with processes with unbounded loops, each possible combination of loop iteration

numbers leads to a di�erent LIT.

This leads us to the de�nition of a Loop Instance Type:

De�nition 4.3. (Loop Instance Type (LIT)) A Loop Instance Type L of a pro-

cess graph P is a directed acyclic process graph L = (NL, EL). A process graph L is

a Loop Instance Type of a process graph P (litOf(L, P )) if and only if it satis�es all

following rules:

Rule 1 - nodes:

For each node x in P , there is at least one derived node x′ in the derived L.

∀x∃x′(x ∈ NP ∧ x′ ∈ NL ∧ equi(x, x′, P, L))

Rule 2 - start node:

An LIT starts with a start node x′ that was derived from the start node x from the

corresponding process graph P .

∀x′∃x((x ∈ NP ∧ x′ ∈ NL ∧ equi(x, x′, P, L) ∧ start(x′, L))⇒ start(x, P ))

Rule 3 - end node:

An LIT ends with an end node x′ that was derived from the end node x from the

corresponding process graph P .

∀x′∃x((x ∈ NP ∧ x′ ∈ NL ∧ equi(x, x′, P, L) ∧ end(x′, L))⇒ end(x, P ))

Rule 4 - path between nodes:

Each node x′ in an LIT is placed on a path between the start node s′ and the end

node e′.



46 CHAPTER 4. EXTENDED TIME CONSTRAINTS

∀x′, s′, e′((x′, s′, e′ ∈ NL ∧ start(s′, L) ∧ end(e′, L))
⇒ (pred(s′, x′, L) ∧ succ(e′, x′, L)))

Rule 5 - LCV (non related loops):

Only valid LCVs must appear in an LIT. In a valid LCV, a scalar component cx
′

l.Label

in the Loop Counter Vector x′.LCV of the node x′ ∈ NL must equal 0 for each loop

l that is not a surrounding loop of the equivalent node of x′ in P .

∀x, x′, l((x, l ∈ NP ∧ x′ ∈ NL ∧ l.T ype = LS ∧ ¬inLoop(x, l, P )
∧ equi(x, x′, P, L))⇒ lc(x′, l.Label, L) = 0)

Rule 6 - LCV (nested loops):

In a valid LCV, a scalar component for a particular loop can only be positive if the

scalar components for all outer loops are greater than 0, since an inner loop can only

be entered if the outer loops have been entered before.

∀l, k, x′((l, k ∈ NP ∧ x′ ∈ NL ∧ l.T ype = LS ∧ k.Type = LS

∧ l 6= k ∧ inLoop(l, k, P ) ∧ lc(x′, l.Label, L) > 0)

⇒ lc(x′, k.Label, L) > 0)

Rule 7 - LCV (iteration increment):

A valid LCV of a node is an LCV where each scalar component (loop counter) is

a result of an increment of the scalar component of the previous iteration of the

corresponding loop. If, for a node x′′ ∈ NL, there is a scalar component (counter)

cx
′′

l.Label = n for the loop l in its LCV x′′.LCV , then there also must exist a node x′

with a scalar component cx
′

l.Label = n−1 for the same loop l in its LCV x′.LCV , while

the other scalar components of both nodes x′′ and x′ are the same.

∀l, k, x, x′′∃x′((x, l, k ∈ NP ∧ x′, x′′ ∈ NL ∧ l.T ype = LS ∧ k.Type = LS

∧ l 6= k ∧ equi(x, x′, P, L) ∧ equi(x, x′′, P, L) ∧ lc(x′′, l.Label, L) > 1)

⇒ succ(x′′, x′, L) ∧ lc(x′, l.Label, L) = lc(x′′, l.Label, L)− 1

∧ lc(x′, k.Label, L) = lc(x′′, k.Label, L))



4.1. BASIC MODELS AND DEFINITIONS 47

Rule 8 - edges:

Each edge (x, y) ∈ EP that does not start or end with a LOOP-split or LOOP-join

node in the corresponding P , and each edge (x, y) ∈ EP that ends with a LOOP-

split node, but does not start with a LOOP-split node, appears as a derived edge

(x′, y′) ∈ EL between equivalent nodes x′ and y′ that both have the same LCV.

∀x, y, x′, y′((x, y ∈ NP ∧ (x, y) ∈ EP ∧ x′, y′ ∈ NL

∧ ((x.Type 6= LS ∧ x.Type 6= LJ ∧ y.Type 6= LS ∧ y.Type 6= LJ)

∨ (x.Type 6= LS ∧ y.Type = LS))

∧ equi(x, x′, P, L) ∧ equi(y, y′, P, L) ∧ x′.LCV = y′.LCV )

⇒ dsucc(y′, x′, L))

Rule 9 - LOOP-split true-edge:

Each true-edge (x, y, T ) ∈ EP that follows a LOOP-split node in the corresponding

P appears as a derived edge (x′, y′, T ) ∈ EL between the equivalent nodes x′ and y′.

Nodes x′ and y′ have the same LCV, except the scalar component cy
′

x.Label in the Loop

Counter Vector y′.LCV of the node y′ ∈ NL is increased by 1 in comparison to the

scalar component cx
′

x.Label of node x
′.

∀x, y, x′, y′, l((x, y, l ∈ NP ∧ (x, y, T ) ∈ EP ∧ x′, y′ ∈ NL

∧ x.Type = LS ∧ l.T ype = LS ∧ x 6= l

∧ equi(x, x′, P, L) ∧ equi(y, y′, P, L)
∧ lc(x′, l.Label, L) = lc(y′, l.Label, L)

∧ lc(x′, x.Label, L) = lc(y′, x.Label, L)− 1)

⇒ dsucc(y′, x′, L) ∧ (x′, y′, T ) ∈ EL)

Rule 10 - LOOP-split false-edge:

Each false-edge (x, y, F ) ∈ EP that starts with a LOOP-split node, but does not

end with a LOOP-join node in the corresponding P , appears as a derived edge

(x′, y′) ∈ EL between the counterpart LOOP-join node of the equivalent node x′ and

the equivalent node y′ that both have the same LCV.



48 CHAPTER 4. EXTENDED TIME CONSTRAINTS

∀x, y, x′, y′j′((x, y ∈ NP ∧ (x, y, F ) ∈ EP ∧ x′, y′, j′ ∈ NL

∧ x.Type = LS ∧ y.Type 6= LS ∧ equi(x, x′, P, L) ∧ equi(y, y′, P, L)
∧ counterpart(j′, x′, L) ∧ j′.LCV = y′.LCV )

⇒ dsucc(y′, j′, L))

Rule 11 - LOOP-join outgoing edge:

Each edge (x, y) ∈ EP that starts with a LOOP-join and ends with a LOOP-split node

in the corresponding P appears as a derived edge (y′, x′, F ) ∈ EL between derived

nodes y′ and x′ that both have the same LCV.

∀x, y, x′, y′((x, y ∈ NP ∧ (x, y) ∈ EP ∧ x′, y′ ∈ NL

∧ x.Type = LJ ∧ y.Type = LS

∧ equi(x, x′, P, L) ∧ equi(y, y′, P, L) ∧ x′.LCV = y′.LCV )

⇒ (dsucc(x′, y′, L) ∧ (y′, x′, F ) ∈ EL))

Rule 12 - LOOP-join ingoing edge (last iteration):

Each edge (x, y) ∈ EP that ends with a LOOP-join node in the corresponding P ,

appears in the last iteration of the corresponding loop in L as a derived edge (x′, y′) ∈
EL between nodes x′ and y′. Both nodes, x′ and y′, have the same LCV, except the

scalar component cy
′

s.Label in the Loop Counter Vector y′.LCV of the node y′ ∈ NL is

decreased by 1 in comparison to the scalar component cx
′

s.Label of node x
′.

∀x, y, l, s, t, x′, y′((x, y, l, s, t ∈ NP ∧ (x, y) ∈ EP ∧ x′, y′ ∈ NL ∧ l 6= s

∧ y.Type = LJ ∧ s.Type = LS ∧ counterpart(s, y, P ) ∧ equi(y, y′, P, L)
∧ (x.Type 6= LS ∧ equi(x, x′, P, L)
∨ x.Type = LS ∧ t.Type = LJ ∧ counterpart(t, x, P ) ∧ equi(t, x′, P, L))

∧ lc(x′, l.Label, L) = lc(y′, l.Label, L)

∧ lc(x′, s.Label, L) = lc(y′, s.Label, L) + 1

∧ @x′′(x′′ ∈ NL ∧ succ(x′′, x′, L)
∧ lc(x′, l.Label, L) = lc(y′, l.Label, L)

∧ lc(x′′, s.Label, L) > lc(x′, s.Label, L))

⇒ dsucc(y′, x′, L))



4.1. BASIC MODELS AND DEFINITIONS 49

Rule 13 - LOOP-join ingoing edge (not last iteration):

Each edge (x, y) ∈ EP that ends with a LOOP-join node in the corresponding P ,

appears in a not-last-iteration of the corresponding loop in L as two derived edges

(x′, p′) and (q′, y′) ∈ EL. The �rst edge (x′, p′) is the edge that connects the last loop-

body node occurrence x′ with the start of the next iteration of the same loop starting

with a LOOP −XOR− split node. The second edge (q′, y′) connects the end of the

loop iteration initiated by the �rst edge (x′, p′) with the LOOP −XOR − join node

of the previous iteration of the same loop. Nodes x′, p′, and q′ have the same LCV.

Node y′ has the same LCV as node x′, except the scalar component cy
′

s.Label in the

Loop Counter Vector y′.LCV of the node y′ ∈ NL is decreased by 1 in comparison to

the scalar component cx
′

s.Label of node x
′.

∀x, y, l, s, t, x′, y′, p′, q′((x, y, l, s, t ∈ NP ∧ (x, y) ∈ EP ∧ x′, y′, p′, q′ ∈ NL ∧ l 6= s

∧ y.Type = LJ ∧ s.Type = LS ∧ counterpart(s, y, P ) ∧ equi(y, y′, P, L)
∧ (x.Type 6= LS ∧ equi(x, x′, P, L)
∨ x.Type = LS ∧ t.Type = LJ ∧ counterpart(t, x, P ) ∧ equi(t, x′, P, L))

∧ equi(s, p′, P, L) ∧ equi(t, q′, P, L)
∧ lc(x′, l.Label, L) = lc(y′, l.Label, L)

∧ lc(x′, s.Label, L) = lc(y′, s.Label, L) + 1

∧ ∃x′′(x′′ ∈ NL ∧ succ(x′′, x′, L)
∧ lc(x′, l.Label, L) = lc(y′, l.Label, L)

∧ lc(x′′, s.Label, L) > lc(x′, s.Label, L))

⇒ dsucc(p′, x′, L) ∧ dsucc(q′, p′, L) ∧ dsucc(y′, q′, LI))

The process graph L from the �gure 4.3 is a Loop Instance Type of process graph

P from the �gure 4.2, because it satis�es all 13 rules for a Loop Instance Type. Let's

observe, how each rule applies to the LIT L:

Rule 1 - nodes:

For each node in P , there is at least one equivalent node in L. LS2, C, and LJ2

each have two equivalent nodes, all others have only one each.



50 CHAPTER 4. EXTENDED TIME CONSTRAINTS

Rule 2 - start node:

The start node in L is A(0,0), which is derived from A in P , so A must be the start

node in P , which it is.

Rule 3 - end node:

The end node in L is H(0,0), which is derived from H in P , so H must be the end

node in P , which it is.

Rule 4 - path between nodes:

Each node in L is a successor of the start node A(0,0) and at the same time a prede-

cessor of the end node H(0,0).

Rule 5 - LCV (non related loops):

Only nodes LS1, B, LS2, C, LJ2, and LJ1 are a part of a loop in P , so only their

equivalents in L can have scalar components greater than 0, which is the case. The

nodes LS1, B, and LJ1 are only a part of the outer loop starting with LS1 in P ,

but not a part of the inner loop starting with LS2. Therefore, the scalar component

for the inner loop LS2 in the LCVs of their equivalent nodes can only be 0, since

the loop LS2 is not relevant for these three nodes. This statement is also true. The

LIT L would not be valid in respect to this rule if there was a node B with an LCV

(2,1). That would mean that this node is the occurrence of B in the second iteration

of the outer loop LS1 and the �rst iteration of the inner loop LS2. However, B is

not placed in the inner loop, and so it can also not occur in an iteration of this loop.

Rule 6 - LCV (nested loops):

Nodes LS2, C, and LJ2 are embraced with the outer loop LS1 in P , so their equiv-

alents in L can have scalar components greater than 0 for both loops LS1 and LS2.

However, the scalar components of the inner loop LS2 can only be greater than 0

if the scalar components for the outer loop LS1 are also greater than 0. This rule

applies to L. The LIT L would not be valid in respect to this rule if there was a

node C with an LCV (0,1). This would mean that this node is the occurrence of C

in the �rst iteration of the inner loop LS2 but not in an iteration of the outer loop

LS1. However, this is not possible, since the inner loop LS2 can only be entered if

the outer loop LS1 was entered before.



4.1. BASIC MODELS AND DEFINITIONS 51

Rule 7 - LCV (iteration increment):

There is a node C with an LCV (1,2) which means that this node is the occurrence

of C in the �rst iteration of loop LS1 and the second iteration of loop LS2. If there

is a second iteration of loop LS2, then there must also be a �rst iteration of the same

loop. This means that there must be a node C with an LCV (1,1), which there is.

Rule 8 - edges:

The edges A → XS1, XS1 → LS1, B → LS2, XS1 → D, D → AS1, AS1 → E,

AS1 → F , E → AJ1, F → AJ1, AJ1 → G, G → XJ1, and XJ1 → H from P

appear also as derived edges in L with the same LCV for the edge start and the edge

end node: A(0,0) → XS1(0,0), XS1(0,0)
T−→ LS1(0,0), B(1,0) → LXS2(1,0), XS1(0,0)

F−→
D(0,0), D(0,0) → AS1(0,0), AS1(0,0) → E(0,0), AS1(0,0) → F(0,0), E(0,0) → AJ1(0,0),

F(0,0) → AJ1(0,0), AJ1(0,0) → G(0,0), G(0,0) → XJ1(0,0), and XJ1(0,0) → H(0,0).

The remaining edges from P (LS1 → B, LS1 → XJ1, LS2 → C, LS2 → LJ1,

C → LJ2, LJ2→ LS2, and LJ1→ LS1) are regulated by other rules.

Rule 9 - LOOP-split true-edge:

The edges LS1 → B and LS2 → C from P appear as derived edges LXS1(0,0)
T−→

B(1,0), LXS2(1,0)
T−→ C(1,1), and LXS2(1,1)

T−→ C(1,2) in L, such that the LCV of the

edge end node is incremented by 1, since the edge start node marks the start of a

new loop iteration.

Rule 10 - LOOP-split false-edge:

The edge LS1 → XJ1 from P appears as derived edge LXJ1(0,0) → XJ1(0,0) in L.

The edge LS2→ LJ1 is covered by rules 12 and 13.

Rule 11 - LOOP-join outgoing edge:

The edges LJ1 → LS1 and LJ2 → LS2 from P appear as derived false-edges

LXS1(0,0)
F−→ LXJ1(0,0), LXS2(1,0)

F−→ LXJ2(1,0), and LXS2(1,1)
F−→ LXJ2(1,1) in L.

Rule 12 - LOOP-join ingoing edge (last iteration):

The edges C → LJ2 and LS2 → LJ1 from P appear as derived edges C(1,2) →
LXJ2(1,1) and LXJ2(1,0) → LXJ1(0,0) in L. Both derived edges close the last it-

eration of the corresponding loop (the second iteration of the inner loop is the last



52 CHAPTER 4. EXTENDED TIME CONSTRAINTS

iteration of the inner loop, and the �rst iteration of the outer loop is also the last

iteration of the outer loop). This is indicated in the decrease of the loop counter

((1,2) is decreased to (1,1) and (1,0) is decreased to (0,0)).

Rule 13 - LOOP-join ingoing edge (not last iteration):

The edge C → LJ2 from P appears as two derived edges C(1,1) → LXS2(1,1) and

LXJ2(1,1) → LXJ2(1,0) in L. The �rst derived edge C(1,1) → LXS2(1,1) leads into

the second iteration of the inner loop, while the second derived edge LXJ2(1,1) →
LXJ2(1,0) closes the �rst iteration of the inner loop.

The outer loop that starts with the node LS1 in P has only one iteration in L,

therefore rule 13 is irrelevant for this loop and its edge LS2→ LJ1.

From each Loop Instance Type, we can derive Instance Types. We use Instance

Types in the de�nition of Extended Time Constraints. Instance Type is introduced

in the next section.

4.1.3 Instance Type

An Instance Type is a subgraph of a valid Loop Instance Type. An Instance Type

starts and ends with the equivalent start and end node as the corresponding LIT.

Between the start and end node, an Instance Type contains a subset of nodes and

edges of the corresponding LIT, such that they are all on a path between the start

and the end node and each decision node has only one direct successor instead of

two. We de�ne an Instance Type as follows:

De�nition 4.4. (Instance Type) An Instance Type of a process graph P is a di-

rected acyclic graph I = (NI , EI), which is a subgraph of a Loop Instance Type

L = (NL, EL), derived from the same process graph P (litOf(L,P)). A directed acyclic

graph I is called an Instance Type of a process graph P (instOf(I,P)) if it satis�es

all of the following rules:



4.1. BASIC MODELS AND DEFINITIONS 53

Rule 1 - nodes:

Each node x′ in an Instance Type I has one corresponding node x in L from which

it is derived.

∀x′∃x(x ∈ NL ∧ x′ ∈ NI ∧ equi(x, x′, L, I) ∧ x.LCV = x′.LCV )

Rule 2 - start node:

An Instance Type I starts with a start node x′, which is derived from the start node

x from the corresponding L.

∀x′∃x((x ∈ NL ∧ x′ ∈ NI ∧ equi(x, x′, L, I) ∧ x.LCV = x′.LCV )

∧ start(x′, I))⇒ start(x, L))

Rule 3 - end node:

An Instance Type I ends with an end node x′, which is derived from the end node x

from the corresponding L.

∀x′∃x((x ∈ NL ∧ x′ ∈ NI ∧ equi(x, x′, L, I) ∧ x.LCV = x′.LCV )

∧ end(x′, I))⇒ end(x, L))

Rule 4 - path:

Each node x′ in I is placed on a path between the start node s′ and the end node e′.

∀x′, s′, e′((x′, s′, e′ ∈ NI ∧ start(s′, I) ∧ end(e′, I))
⇒ (pred(s′, x′, I) ∧ succ(e′, x′, I)))

Rule 5 - edges:

Each edge (x′, y′) in I has one corresponding edge (x, y) in the corresponding LIT L,

from which it is derived.

∀x, y, x′, y′((x, y ∈ NL ∧ x′, y′ ∈ NI ∧ (x′, y′) ∈ EI
∧ equi(x, x′, L, I) ∧ equi(y, y′, L, I) ∧ x.LCV = x′.LCV ∧ y.LCV = y′.LCV )

⇒ (x, y) ∈ EL)



54 CHAPTER 4. EXTENDED TIME CONSTRAINTS

Rule 6 - node outdegree:

Each node x′ in I, except AND-split nodes, has only one direct successor.

∀x′((x′ ∈ NI ∧ x′.T ype 6= AS)⇒ outdeg(x′, I) ≤ 1)

Figures 4.4, 4.5, and 4.6 each show an example of an Instance Type of the process

graph P from �gure 4.2. All three Instance Types are a subgraph of a Loop Instance

Type of the same process graph P (see �gure 4.3), and they all satisfy all the rules

for a valid Instance Type:

• they all contain only nodes that also occur in the corresponding LIT from

�gure 4.3 and have the same LCV;

• they all start with the node A(0,0), which is also the start node in the corre-

sponding LIT;

• they all end with the node H(0,0), which is also the end node in the correspond-

ing LIT;

• they all contain only nodes that are placed on a path between the start node

A(0,0) and the end node H(0,0);

• they all contain only edges that also occur in the corresponding LIT between

equivalent nodes with the same LCVs as they have in the Instance Types;

• they all contain only nodes with only one outgoing edge or two outgoing edges

in case of the AND-split node AS1(0,0) in Instance Type in �gure 4.4.



4.1. BASIC MODELS AND DEFINITIONS 55

Figure 4.4: Example of a valid Instance Type I1

Figure 4.5: Example of a valid Instance Type I2

Figure 4.6: Example of a valid Instance Type I3

Instance Types are needed for the de�nition of the semantics of Extended Time

Constraints. In the next section we �nally introduce Extended Time Constraints

which we brie�y described in the motivating real world example of energy supplier

switching at the beginning of this chapter.



56 CHAPTER 4. EXTENDED TIME CONSTRAINTS

4.2 Extended Time Constraints

In a process graph, the time perspective of the process can be considered by specifying

time constraints. Two well-known types of time constraints are the Upper Bound

Constraint (UBC) and the Lower Bound Constraint (LBC), introduced by Eder et

al. [EPPR99]. An Upper Bound Constraint ubc(A,B, δ) limits the maximal duration

between the ending point of the source activity A and the ending point of destination

activity B to δ time units. In contrast, a Lower Bound Constraint lbc(A,B, δ) limits

the minimal duration between the ending point of the source activity A and the

ending point of destination activity B to δ time units as described in section 3.2.1.

The Upper and Lower Bound Constraint, however, work only for acyclic process

graphs. If the source or destination activity in a time constraint ubc(A,B, δ) or

lbc(A,B, δ) appears in a loop, it is not clear which activity occurrence is meant by A

or by B, since there can be many of them. In order to specify the exact occurrence

of the source and destination activity in a process with loops, we introduce Extended

Time Constraints that extend the Upper and the Lower Bound Constraint such that

they can be applied to cyclic process graphs.

An Extended Time Constraint (ETC) de�nes a set of source activity occurrences

and a set of destination activity occurrences instead of only one source activity and

one destination activity. Depending on the Instance Type on which an ETC is

applied, the source and destination occurrence set can be empty, may contain one,

or more than one element (nodes). Temporal relations between the single elements of

the source and destination set that are de�ned by an ETC, are derived into Atomic

Time Constraints.

An Atomic Time Constraint (ATC) limits the maximal duration (or minimal

duration in case of a lower bound constraint type) between the ending point of a

particular source activity occurrence and the ending point of a particular destination

activity occurrence.

In this section, we de�ne an Extended Time Constraint, including the syntax and

the semantic of possible source and destination expressions in an ETC. In the next

section, we de�ne an Atomic Time Constraint and how it is derived from an ETC.



4.2. EXTENDED TIME CONSTRAINTS 57

De�nition 4.5. (Extended Time Constraint (ETC))

An Extended Time Constraint tc ∈ TCP in a (cyclic) process graph P is a quintuple

(ID, type, δ, source, destination) that constrains the temporal relation between the

de�ned source node set and destination node set to a maximum of δ time units if

type of tc is UBC, or to a minimum of δ time units if type of tc is LBC.

The source node set and destination node set in an ETC are speci�ed by the ex-

pressions source and destination. Evaluation of the expression source and destination

returns the source node set S ⊆ NP and the destination node set D ⊆ NP .

The syntax of a source and destination expression is de�ned in the following

subsection 4.2.1. The semantic of each possible expression is de�ned in subsection

4.2.2

4.2.1 Extended Time Constraints Syntax

The expressions source and destination in an Extended Time Constraint must com-

ply with following syntax rules:

source := [<quanti�er>] nodeLabel [<loopRef>]

destination := [<quanti�er> [<relation>] ] nodeLabel

[<loopRef> [<iterationRef>] ]

<quanti�er> ::= FIRST | LAST | EACH

<relation> ::= RELATIVE | ABSOLUTE

<loopRef> ::= WITHIN loopLabel

<iterationRef> ::= <iteration> loopLabel

<iteration> ::= SAME_ITERATION | NEXT_ITERATION



58 CHAPTER 4. EXTENDED TIME CONSTRAINTS

Each source or destination expression must at least contain a nodeLabel. There

are three di�erent quantifiers (FIRST , LAST , and EACH) that can be used in

a source or destination expression. The default quantifier is EACH, which is the

implicit quantifier in an expression that contains only nodeLabel.

The relation in a destination expression speci�es if the destination expression is

evaluated without respect to the source (ABSOLUTE) or with respect to the source

(RELATIV E). The nodes in the result set of an evaluated destination expression

with relation RELATIV E must be successors of at least one node in the source

result set. The default relation is ABSOLUTE, therefore destination expressions

without a relation are handled as ABSOLUTE.

The loop reference loopRef is optional in source and destination expression and

speci�es to which loop the quantifier is bound. The loop reference is only relevant

if the activity nodeLabel we want to constrain is placed in a nested loop. In such

case, the quantifier alone is not capable of stating the same speci�cation as the

quantifier together with a loopRef . The resulting set of the expression FIRST X,

for example, would contain only one - the �rst appearing - node with label X.

FIRST X WITHIN LS1 would result in the exact same set if LS1 is the outest

loop regarding X. However, if LS1 is one of the inner loops, the resulting set of

the expression FIRST X WITHIN LS1 would contain each �rst X after each new

iteration of each loop that is surrounding the loop LS1. The examples in the next

section will make the di�erence easier to understand.

The iteration reference iterationRef makes it possible to include only nodes

into the result set of a RELATIV E destination that are either in the SAME_

ITERATION of a particular loop with loopLabel as the source, or in the NEXT_

ITERATION regarding the source node to which they relate.



4.2. EXTENDED TIME CONSTRAINTS 59

The ETC syntax rules lead to the following possible absolute source and destination

expressions, where X represents an arbitrary activity label and L is the label of an

arbitrary LOOP-split node:

• X

• FIRST X

• LAST X

• EACH X

• FIRST X WITHIN L

• LAST X WITHIN L

• EACH X WITHIN L

Furthermore, the syntax rules allow the following relative destination expressions:

• FIRST RELATIV E X

• LAST RELATIV E X

• EACH RELATIV E X

• FIRST RELATIV E X WITHIN L

• LAST RELATIV E X WITHIN L

• EACH RELATIV E X WITHIN L

• FIRST RELATIV E X WITHIN L SAME_ITERATION K

• LAST RELATIV E X WITHIN L SAME_ITERATION K

• EACH RELATIV E X WITHIN L SAME_ITERATION K

• FIRST RELATIV E X WITHIN L NEXT_ITERATION K

• LAST RELATIV E X WITHIN L NEXT_ITERATION K

• EACH RELATIV E X WITHIN L NEXT_ITERATION K

The semantic of each possible expression is de�ned in the following subsection.



60 CHAPTER 4. EXTENDED TIME CONSTRAINTS

4.2.2 Extended Time Constraints Semantic

Each source or destination expression expr in an Extended Time Constraint tc

can be evaluated with the function ξ(expr, tc, I) that returns the node result set

R ⊆ NI . The node set R contains all source nodes (or destination nodes, respectively)

that satisfy the node set speci�cation expr. Function ξ(expr, tc, I) is de�ned as

follows:

ξ(expr, tc, I) : (expr, tc, I) 7→ R ⊆ NI

In following, the resulting set R ⊆ NI of all possible expressions is de�ned and

explained with examples. In these examples, we refer to Instance Types from the

previous section (I1, I2, and I3) and three new Instance Types I4, I5, and I6 from

�gures 4.7, 4.8, and 4.9. All six Instance Types are derived from process graph P ,

represented in �gure 4.2. However, I1, I2, and I3 are a subgraph of the LIT from

�gure 4.3 and I4, I5, and I6 are a subgraph of some other LIT that can be derived

from P .

FIRST X

ξ((FIRST X), tc, I) := {n ∈ NI |n.Label = X ∧
@m(m ∈ NI ∧m.Label = X ∧m < n)}

Evaluation of the expression FIRST X returns the �rst node n with label X that

represents the �rst occurrence of activity X. n is the �rst node with label X if there

is no node m with label X that is a predecessor of n. The Loop Counter Vector

(LCV) of node n can contain scalar components that are greater than 1, since the

�rst occurrence of a node does not necessarily appear in the �rst iteration of a loop

(consider inner loops and XOR-paths that can be skipped). For an Instance Type

where loops that are relevant for activity X are not entered, the result set is empty.

This is the case for every expression.



4.2. EXTENDED TIME CONSTRAINTS 61

Figure 4.7: Example of a valid Instance Type I4

Figure 4.8: Example of a valid Instance Type I5

Figure 4.9: Example of a valid Instance Type I6



62 CHAPTER 4. EXTENDED TIME CONSTRAINTS

Examples:
ξ((FIRST B), (TC1, UBC, 5, FIRST B, H), I1) = {}
ξ((FIRST B), (TC1, UBC, 5, FIRST B, H), I2) = {B(1,0)}
ξ((FIRST B), (TC1, UBC, 5, FIRST B, H), I3) = {}
ξ((FIRST B), (TC1, UBC, 5, FIRST B, H), I4) = {B(1,0)}
ξ((FIRST B), (TC1, UBC, 5, FIRST B, H), I5) = {B(1,0)}
ξ((FIRST B), (TC1, UBC, 5, FIRST B, H), I6) = {B(1,0)}

ξ((FIRST C), (TC2, UBC, 5, FIRST C, H), I1) = {}
ξ((FIRST C), (TC2, UBC, 5, FIRST C, H), I2) = {C(1,1)}
ξ((FIRST C), (TC2, UBC, 5, FIRST C, H), I3) = {}
ξ((FIRST C), (TC2, UBC, 5, FIRST C, H), I4) = {C(1,1)}
ξ((FIRST C), (TC2, UBC, 5, FIRST C, H), I5) = {C(2,1)}
ξ((FIRST C), (TC2, UBC, 5, FIRST C, H), I6) = {C(1,1)}

LAST X

ξ((LAST X), tc, I) := {n ∈ NI |n.Label = X ∧
@m(m ∈ NI ∧m.Label = X ∧m > n)}

Evaluation of the expression LAST X returns the last node n with label X. n is the

last node with label X if there is no node m with label X that is a successor of n.

Examples:
ξ((LAST B), (TC3, UBC, 5, LAST B, H), I1) = {}
ξ((LAST B), (TC3, UBC, 5, LAST B, H), I2) = {B(1,0)}
ξ((LAST B), (TC3, UBC, 5, LAST B, H), I3) = {}
ξ((LAST B), (TC3, UBC, 5, LAST B, H), I4) = {B(3,0)}
ξ((LAST B), (TC3, UBC, 5, LAST B, H), I5) = {B(3,0)}
ξ((LAST B), (TC3, UBC, 5, LAST B, H), I6) = {B(2,0)}

ξ((LAST C), (TC4, UBC, 5, LAST C, H), I1) = {}
ξ((LAST C), (TC4, UBC, 5, LAST C, H), I2) = {C(1,1)}
ξ((LAST C), (TC4, UBC, 5, LAST C, H), I3) = {}
ξ((LAST C), (TC4, UBC, 5, LAST C, H), I4) = {C(3,3)}
ξ((LAST C), (TC4, UBC, 5, LAST C, H), I5) = {C(3,2)}
ξ((LAST C), (TC4, UBC, 5, LAST C, H), I6) = {C(2,1)}

EACH X

ξ((EACH X), tc, I) := {n ∈ NI |n.Label = X}

Evaluation of the expression EACH X returns all nodes n with label X.



4.2. EXTENDED TIME CONSTRAINTS 63

Examples:
ξ((EACH B), (TC5, UBC, 5, EACH B, H), I1) = {}
ξ((EACH B), (TC5, UBC, 5, EACH B, H), I2) = {B(1,0)}
ξ((EACH B), (TC5, UBC, 5, EACH B, H), I3) = {}
ξ((EACH B), (TC5, UBC, 5, EACH B, H), I4) = {B(1,0), B(2,0), B(3,0)}
ξ((EACH B), (TC5, UBC, 5, EACH B, H), I5) = {B(1,0), B(2,0), B(3,0)}
ξ((EACH B), (TC5, UBC, 5, EACH B, H), I6) = {B(1,0), B(2,0)}

ξ((EACH C), (TC6, UBC, 5, EACH C, H), I1) = {}
ξ((EACH C), (TC6, UBC, 5, EACH C, H), I2) = {C(1,1)}
ξ((EACH C), (TC6, UBC, 5, EACH C, H), I3) = {}
ξ((EACH C), (TC6, UBC, 5, EACH C, H), I4) = {C(1,1), C(1,2), C(2,1), C(2,2), C(3,1), C(3,2), C(3,3)}
ξ((EACH C), (TC6, UBC, 5, EACH C, H), I5) = {C(2,1), C(2,2), C(3,1), C(3,2)}
ξ((EACH C), (TC6, UBC, 5, EACH C, H), I6) = {C(1,1), C(1,2), C(2,1)}

FIRST X WITHIN L

ξ((FIRST X WITHIN L), tc, I) := {n ∈ NI |n.Label = X ∧
(∃l, k, lP , kP , nP@m(l, k,m ∈ NI ∧ lP , kP , nP ∈ NP ∧ instOf(I, P )

∧ lP .Label = L ∧ lP .T ype = LS ∧ kP .T ype = LS

∧ equi(lP , l, P, I) ∧ equi(kP , k, P, I) ∧ equi(nP , n, P, I)
∧ closestLoop(kP , lP , P ) ∧ inLoop(nP , lP , P )

∧m.Label = X ∧ k < m < n)

∨
∃l, lP , nP@m, kP (l,m ∈ NI ∧ lP , kP , nP ∈ NP ∧ instOf(I, P )

∧ lP .Label = L ∧ lP .T ype = LS ∧ kP .T ype = LS

∧ equi(lP , l, P, I) ∧ equi(nP , n, P, I)
∧ closestLoop(kP , lP , P ) ∧ inLoop(nP , lP , P )

∧m.Label = X ∧m < n))}

Evaluation of the expression FIRST X WITHIN L returns the �rst node n with

label X from a series of iterations of the loop L. n is such a node if there is an

LXS-node of the nearest outer loop relative to L before the node n and there is no

other node with the label X between them. An LXS-node of the nearest outer loop

relative to L indicates a series of iterations of the inner loop L. An inner loop can

have multiple series of iterations (one for each new iteration of an outer loop) and

therefore the result set can have more than one elements. If there is no other loop

that is surrounding loop L, the expression FIRST X WITHIN L is equivalent to

FIRST X.



64 CHAPTER 4. EXTENDED TIME CONSTRAINTS

Examples:
ξ((FIRST B WITHIN LS1), (TC7, UBC, 5, FIRST B WITHIN LS1, H), I4) = {B(1,0)}
ξ((FIRST B WITHIN LS1), (TC7, UBC, 5, FIRST B WITHIN LS1, H), I5) = {B(1,0)}
ξ((FIRST B WITHIN LS1), (TC7, UBC, 5, FIRST B WITHIN LS1, H), I6) = {B(1,0)}

ξ((FIRST C WITHIN LS1), (TC8, UBC, 5, FIRST C WITHIN LS1, H), I4) = {C(1,1)}
ξ((FIRST C WITHIN LS1), (TC8, UBC, 5, FIRST C WITHIN LS1, H), I5) = {C(2,1)}
ξ((FIRST C WITHIN LS1), (TC8, UBC, 5, FIRST C WITHIN LS1, H), I6) = {C(1,1)}

ξ((FIRST C WITHIN LS2), (TC9, UBC, 5, FIRST C WITHIN LS2, H), I4) = {C(1,1), C(2,1), C(3,1)}
ξ((FIRST C WITHIN LS2), (TC9, UBC, 5, FIRST C WITHIN LS2, H), I5) = {C(2,1), C(3,1)}
ξ((FIRST C WITHIN LS2), (TC9, UBC, 5, FIRST C WITHIN LS2, H), I6) = {C(1,1), C(2,1)}

LAST X WITHIN L

ξ((LAST X WITHIN L), tc, I) := {n ∈ NI |n.Label = X ∧
∃j, s, jP , sP , nP@m(j, s,m ∈ NI ∧ jP , sP , nP ∈ NP ∧ instOf(I, P )

∧ sP .Label = L ∧ sP .T ype = LS ∧ jP .T ype = LJ

∧ equi(sP , s, P, I) ∧ equi(jP , j, P, I) ∧ equi(nP , n, P, I)
∧ counterpart(sP , jP , P ) ∧ inLoop(nP , sP , P )
∧m.Label = X ∧ n < m < j)}

Evaluation of the expression LAST X WITHIN L returns the last node n with

label X from a series of iterations of the loop L. n is such a node if there is an

LXJ-node of loop L after the node n and there is no other node with the label X

between them. An LXJ-node of the loop L indicates the end of iteration series of

loop L.

Examples:
ξ((LAST B WITHIN LS1), (TC10, UBC, 5, LAST B WITHIN LS1, H), I4) = {B(3,0)}
ξ((LAST B WITHIN LS1), (TC10, UBC, 5, LAST B WITHIN LS1, H), I5) = {B(3,0)}
ξ((LAST B WITHIN LS1), (TC10, UBC, 5, LAST B WITHIN LS1, H), I6) = {B(2,0)}

ξ((LAST C WITHIN LS1), (TC11, UBC, 5, LAST C WITHIN LS1, H), I4) = {C(3,3)}
ξ((LAST C WITHIN LS1), (TC11, UBC, 5, LAST C WITHIN LS1, H), I5) = {C(3,2)}
ξ((LAST C WITHIN LS1), (TC11, UBC, 5, LAST C WITHIN LS1, H), I6) = {C(2,1)}

ξ((LAST C WITHIN LS2), (TC12, UBC, 5, LAST C WITHIN LS2, H), I4) = {C(1,2), C(2,2), C(3,3)}
ξ((LAST C WITHIN LS2), (TC12, UBC, 5, LAST C WITHIN LS2, H), I5) = {C(2,2), C(3,2)}
ξ((LAST C WITHIN LS2), (TC12, UBC, 5, LAST C WITHIN LS2, H), I6) = {C(1,2), C(2,1)}



4.2. EXTENDED TIME CONSTRAINTS 65

EACH X WITHIN L

ξ((EACH X WITHIN L), tc, I) := {n ∈ NI |n.Label = X}

The expression EACH X WITHIN L is equivalent to expression EACH X. Its

evaluation returns all nodes n with label X.

Examples:
ξ((EACH B WITHIN LS1), (TC13, UBC, 5, EACH B WITHIN LS1, H), I4) = {B(1,0), B(2,0), B(3,0)}
ξ((EACH B WITHIN LS1), (TC13, UBC, 5, EACH B WITHIN LS1, H), I5) = {B(1,0), B(2,0), B(3,0)}
ξ((EACH B WITHIN LS1), (TC13, UBC, 5, EACH B WITHIN LS1, H), I6) = {B(1,0), B(2,0)}

ξ((EACH C WITHIN LS1), (TC14, UBC, 5, EACH C WITHIN LS1, H), I4) =

{C(1,1), C(1,2), C(2,1), C(2,2), C(3,1), C(3,2), C(3,3)}
ξ((EACH C WITHIN LS1), (TC14, UBC, 5, EACH C WITHIN LS1, H), I5) = {C(2,1), C(2,2), C(3,1), C(3,2)}
ξ((EACH C WITHIN LS1), (TC14, UBC, 5, EACH C WITHIN LS1, H), I6) = {C(1,1), C(1,2), C(2,1)}

ξ((EACH C WITHIN LS2), (TC15, UBC, 5, EACH C WITHIN LS2, H), I4) =

{C(1,1), C(1,2), C(2,1), C(2,2), C(3,1), C(3,2), C(3,3)}
ξ((EACH C WITHIN LS2), (TC15, UBC, 5, EACH C WITHIN LS2, H), I5) = {C(2,1), C(2,2), C(3,1), C(3,2)}
ξ((EACH C WITHIN LS2), (TC15, UBC, 5, EACH C WITHIN LS2, H), I6) = {C(1,1), C(1,2), C(2,1)}

All expressions that were described above are absolute and can be used to specify

a source or a destination of an Extended Time Constraint. The following expres-

sions are relative to a given set of source nodes and can only be used to specify a

destination of an Extended Time Constraint.

FIRST RELATIVE X

ξ((FIRST RELATIV E X), tc, I) := {n ∈ NI |n.Label = X ∧
∃s@m(s,m ∈ NI ∧s ∈ ξ(tc.source, tc, I)∧m.Label = X∧s < m < n)}

Evaluation of the (destination) expression FIRST RELATIV E X returns the �rst

node n with label X that appears after a source node s.



66 CHAPTER 4. EXTENDED TIME CONSTRAINTS

Examples:
ξ((FIRST RELATIVE B), (TC16, UBC, 5, A, FIRST RELATIVE B), I4) = {B(1,0)}
ξ((FIRST RELATIVE C), (TC17, UBC, 5, A, FIRST RELATIVE C), I4) = {C(1,1)}

ξ((FIRST RELATIVE B), (TC18, UBC, 5, FIRST B, FIRST RELATIVE B), I4) = {B(2,0)}
ξ((FIRST RELATIVE C), (TC19, UBC, 5, FIRST B, FIRST RELATIVE C), I4) = {C(1,1)}

ξ((FIRST RELATIVE B), (TC20, UBC, 5, LAST B, FIRST RELATIVE B), I4) = {}
ξ((FIRST RELATIVE C), (TC21, UBC, 5, LAST B, FIRST RELATIVE C), I4) = {C(3,1)}

ξ((FIRST RELATIVE B), (TC22, UBC, 5, EACH B, FIRST RELATIVE B), I4) = {B(2,0), B(3,0)}
ξ((FIRST RELATIVE C), (TC23, UBC, 5, EACH B, FIRST RELATIVE C), I4) = {C(1,1), C(2,1), C(3,1)}

LAST RELATIVE X

ξ((LAST RELATIV E X), tc, I) := {n ∈ NI |n.Label = X ∧
∃s@m(s,m ∈ NI ∧s ∈ ξ(tc.source, tc, I)∧m.Label = X∧s < n < m)}

Evaluation of the (destination) expression LAST RELATIV E X returns the last

node n with label X that appears after a source node s.

Examples:
ξ((LAST RELATIVE B), (TC24, UBC, 5, A, LAST RELATIVE B), I4) = {B(3,0)}
ξ((LAST RELATIVE C), (TC25, UBC, 5, A, LAST RELATIVE C), I4) = {C(3,3)}

ξ((LAST RELATIVE B), (TC26, UBC, 5, FIRST B, LAST RELATIVE B), I4) = {B(3,0)}
ξ((LAST RELATIVE C), (TC27, UBC, 5, FIRST B, LAST RELATIVE C), I4) = {C(3,3)}

ξ((LAST RELATIVE B), (TC28, UBC, 5, LAST B, LAST RELATIVE B), I4) = {}
ξ((LAST RELATIVE C), (TC29, UBC, 5, LAST B, LAST RELATIVE C), I4) = {C(3,3)}

ξ((LAST RELATIVE B), (TC30, UBC, 5, EACH B, LAST RELATIVE B), I4) = {B(3,0)}
ξ((LAST RELATIVE C), (TC31, UBC, 5, EACH B, LAST RELATIVE C), I4) = {C(3,3)}

EACH RELATIVE X

ξ((EACH RELATIV E X), tc, I) := {n ∈ NI |n.Label = X ∧
∃s(s ∈ ξ(tc.source, tc, I) ∧ s < n)}

Evaluation of the (destination) expression EACH RELATIV E X returns each

node n with label X that appears after a source node s.



4.2. EXTENDED TIME CONSTRAINTS 67

Examples:
ξ((EACH RELATIVE B), (TC32, UBC, 5, A, EACH RELATIVE B), I4) = {B(1,0), B(2,0), B(3,0)}
ξ((EACH RELATIVE C), (TC33, UBC, 5, A, EACH RELATIVE C), I4) =

{C(1,1), C(1,2), C(2,1), C(2,2), C(3,1), C(3,2), C(3,3)}

ξ((EACH RELATIVE B), (TC34, UBC, 5, FIRST B, EACH RELATIVE B), I4) = {B(2,0), B(3,0)}
ξ((EACH RELATIVE C), (TC35, UBC, 5, FIRST B, EACH RELATIVE C), I4) =

{C(1,1), C(1,2), C(2,1), C(2,2), C(3,1), C(3,2), C(3,3)}

ξ((EACH RELATIVE B), (TC36, UBC, 5, LAST B, EACH RELATIVE B), I4) = {}
ξ((EACH RELATIVE C), (TC37, UBC, 5, LAST B, EACH RELATIVE C), I4) = {C(3,1), C(3,2), C(3,3)}

ξ((EACH RELATIVE B), (TC38, UBC, 5, EACH B, EACH RELATIVE B), I4) = {B(2,0), B(3,0)}
ξ((EACH RELATIVE C), (TC39, UBC, 5, EACH B, EACH RELATIVE C), I4) =

{C(1,1), C(1,2), C(2,1), C(2,2), C(3,1), C(3,2), C(3,3)}

FIRST RELATIVE X WITHIN L

ξ((FIRST RELATIV E X WITHIN L), tc, I) :=

{n ∈ ξ((FIRST X WITHIN L), tc, I) |
∃s(s ∈ ξ(tc.source, tc, I) ∧ s < n)}

Evaluation of the (destination) expression FIRST RELATIV E X WITHIN L

returns all nodes n that are returned by the evaluation of the expression FIRST X

WITHIN L and that appear after a source node s.

Examples:
ξ((FIRST RELATIVE B WITHIN LS1), (TC40, UBC, 5, A, FIRST RELATIVE B WITHIN LS1), I4) =

{B(1,0)}
ξ((FIRST RELATIVE C WITHIN LS1), (TC41, UBC, 5, A, FIRST RELATIVE C WITHIN LS1), I4) =

{C(1,1)}
ξ((FIRST RELATIVE C WITHIN LS2), (TC42, UBC, 5, A, FIRST RELATIVE C WITHIN LS2), I4) =

{C(1,1), C(2,1), C(3,1)}

ξ((FIRST RELATIVE B WITHIN LS1), (TC43, UBC, 5, FIRST B, FIRST RELATIVE B WITHIN LS1), I4) =

{B(2,0)}
ξ((FIRST RELATIVE C WITHIN LS1), (TC44, UBC, 5, FIRST B, FIRST RELATIVE C WITHIN LS1), I4) =

{C(1,1)}
ξ((FIRST RELATIVE C WITHIN LS2), (TC45, UBC, 5, FIRST B, FIRST RELATIVE C WITHIN LS2), I4) =

{C(1,1), C(2,1), C(3,1)}



68 CHAPTER 4. EXTENDED TIME CONSTRAINTS

ξ((FIRST RELATIVE B WITHIN LS1), (TC46, UBC, 5, LAST B, FIRST RELATIVE B WITHIN LS1), I4) =

{}
ξ((FIRST RELATIVE C WITHIN LS1), (TC47, UBC, 5, LAST B, FIRST RELATIVE C WITHIN LS1), I4) =

{C(3,1)}
ξ((FIRST RELATIVE C WITHIN LS2), (TC48, UBC, 5, LAST B, FIRST RELATIVE C WITHIN LS2), I4) =

{C(3,1)}

ξ((FIRST RELATIVE B WITHIN LS1), (TC49, UBC, 5, EACH B, FIRST RELATIVE B WITHIN LS1), I4) =

{B(2,0), B(3,0)}
ξ((FIRST RELATIVE C WITHIN LS1), (TC50, UBC, 5, EACH B, FIRST RELATIVE C WITHIN LS1), I4) =

{C(1,1), C(2,1), C(3,1)}
ξ((FIRST RELATIVE C WITHIN LS2), (TC51, UBC, 5, EACH B, FIRST RELATIVE C WITHIN LS2), I4) =

{C(1,1), C(2,1), C(3,1)}

LAST RELATIVE X WITHIN L

ξ((LAST RELATIV E X WITHIN L), tc, I) :=

{n ∈ ξ((LAST X WITHIN L), tc, I) |
∃s(s ∈ ξ(tc.source, tc, I) ∧ s < n)}

Evaluation of the (destination) expression LAST RELATIV E X WITHIN L

returns all nodes n that are returned by the evaluation of the expression LAST X

WITHIN L and that appear after a source node s.

Examples:
ξ((LAST RELATIVE B WITHIN LS1), (TC52, UBC, 5, A, LAST RELATIVE B WITHIN LS1), I4) =

{B(3,0)}
ξ((LAST RELATIVE C WITHIN LS1), (TC53, UBC, 5, A, LAST RELATIVE C WITHIN LS1), I4) =

{C(3,3)}
ξ((LAST RELATIVE C WITHIN LS2), (TC54, UBC, 5, A, LAST RELATIVE C WITHIN LS2), I4) =

{C(1,2), C(2,2), C(3,3)}

ξ((LAST RELATIVE B WITHIN LS1), (TC55, UBC, 5, FIRST B, LAST RELATIVE B WITHIN LS1), I4) =

{B(3,0)}
ξ((LAST RELATIVE C WITHIN LS1), (TC56, UBC, 5, FIRST B, LAST RELATIVE C WITHIN LS1), I4) =

{C(3,3)}
ξ((LAST RELATIVE C WITHIN LS2), (TC57, UBC, 5, FIRST B, LAST RELATIVE C WITHIN LS2), I4) =

{C(1,2), C(2,2), C(3,3)}

ξ((LAST RELATIVE B WITHIN LS1), (TC58, UBC, 5, LAST B, LAST RELATIVE B WITHIN LS1), I4) =

{}
ξ((LAST RELATIVE C WITHIN LS1), (TC59, UBC, 5, LAST B, LAST RELATIVE C WITHIN LS1), I4) =

{C(3,3)}
ξ((LAST RELATIVE C WITHIN LS2), (TC60, UBC, 5, LAST B, LAST RELATIVE C WITHIN LS2), I4) =

{C(3,3)}



4.2. EXTENDED TIME CONSTRAINTS 69

ξ((LAST RELATIVE B WITHIN LS1), (TC61, UBC, 5, EACH B, LAST RELATIVE B WITHIN LS1), I4) =

{B(3,0)}
ξ((LAST RELATIVE C WITHIN LS1), (TC62, UBC, 5, EACH B, LAST RELATIVE C WITHIN LS1), I4) =

{C(3,3)}
ξ((LAST RELATIVE C WITHIN LS2), (TC63, UBC, 5, EACH B, LAST RELATIVE C WITHIN LS2), I4) =

{C(1,2), C(2,2), C(3,3)}

EACH RELATIVE X WITHIN L

ξ((EACH RELATIV E X WITHIN L), tc, I) := {n ∈ NI |n.Label = X ∧
∃s(s ∈ ξ(tc.source, tc, I) ∧ s < n)}

The expression EACH RELATIV E X WITHIN L is equivalent to the expression

EACH RELATIV E X. Its evaluation returns all nodes n with label X that are

successors of a source node s.

Examples:
ξ((EACH RELATIVE B WITHIN LS1), (TC64, UBC, 5, A, EACH RELATIVE B WITHIN LS1), I4) =

{B(1,0), B(2,0), B(3,0)}
ξ((EACH RELATIVE C WITHIN LS1), (TC65, UBC, 5, A, EACH RELATIVE C WITHIN LS1), I4) =

{C(1,1), C(1,2), C(2,1), C(2,2), C(3,1), C(3,2), C(3,3)}
ξ((EACH RELATIVE C WITHIN LS2), (TC66, UBC, 5, A, EACH RELATIVE C WITHIN LS2), I4) =

{C(1,1), C(1,2), C(2,1), C(2,2), C(3,1), C(3,2), C(3,3)}

ξ((EACH RELATIVE B WITHIN LS1), (TC67, UBC, 5, FIRST B, EACH RELATIVE B WITHIN LS1), I4) =

{B(2,0), B(3,0)}
ξ((EACH RELATIVE C WITHIN LS1), (TC68, UBC, 5, FIRST B, EACH RELATIVE C WITHIN LS1), I4) =

{C(1,1), C(1,2), C(2,1), C(2,2), C(3,1), C(3,2), C(3,3)}
ξ((EACH RELATIVE C WITHIN LS2), (TC69, UBC, 5, FIRST B, EACH RELATIVE C WITHIN LS2), I4) =

{C(1,1), C(1,2), C(2,1), C(2,2), C(3,1), C(3,2), C(3,3)}

ξ((EACH RELATIVE B WITHIN LS1), (TC70, UBC, 5, LAST B, EACH RELATIVE B WITHIN LS1), I4) =

{}
ξ((EACH RELATIVE C WITHIN LS1), (TC71, UBC, 5, LAST B, EACH RELATIVE C WITHIN LS1), I4) =

{C(3,1), C(3,2), C(3,3)}
ξ((EACH RELATIVE C WITHIN LS2), (TC72, UBC, 5, LAST B, EACH RELATIVE C WITHIN LS2), I4) =

{C(3,1), C(3,2), C(3,3)}

ξ((EACH RELATIVE B WITHIN LS1), (TC73, UBC, 5, EACH B, EACH RELATIVE B WITHIN LS1), I4) =

{B(2,0), B(3,0)}
ξ((EACH RELATIVE C WITHIN LS1), (TC74, UBC, 5, EACH B, EACH RELATIVE C WITHIN LS1), I4) =

{C(1,1), C(1,2), C(2,1), C(2,2), C(3,1), C(3,2), C(3,3)}
ξ((EACH RELATIVE C WITHIN LS2), (TC75, UBC, 5, EACH B, EACH RELATIVE C WITHIN LS2), I4) =

{C(1,1), C(1,2), C(2,1), C(2,2), C(3,1), C(3,2), C(3,3)}



70 CHAPTER 4. EXTENDED TIME CONSTRAINTS

Relative expressions FIRST RELATIV E X WITHIN L, LAST RELATIV E

X WITHIN L, and EACH RELATIV E X WITHIN L can be extended with

an iteration reference SAME_ITERATION or NEXT_ITERATION . They

are speci�ed relative to the related set of the source nodes ξ(tc.source, tc, I). Their

semantics are described on the following pages.

FIRST RELATIVE X WITHIN L SAME_ITERATION K

ξ((FIRST RELATIV E X WITHIN L SAME_ITERATION K), tc, I) :=

{n ∈ ξ((FIRST RELATIV E X WITHIN L), tc, I)|
∃s, kP , nP∀lP (s ∈ ξ(tc.source, tc, I)∧lP , kP , nP ∈ NP∧instOf(I, P )
∧ lP .T ype = LS ∧ kP .Label = K ∧ kP .T ype = LS

∧ equi(nP , n, P, I) ∧ inLoop(nP , kP , P ) ∧ inLoop(kP , lP , P )
lc(n, lP .Label, I) = lc(s, lP .Label, I) ∧
lc(n, kP .Label, I) = lc(s, kP .Label, I))}

Evaluation of the (destination) expression FIRST RELATIV E X WITHIN L

SAME_ITERATION K returns all nodes n that are returned by the evaluation

of the expression FIRST RELATIV E X WITHIN L and are in the same iteration

of the loop with the label K as a source node s. Node n and node s are in the same

iteration of the loop with labelK if they have the same loop counter for the loop with

label K and for all other loops in which the loop with label K is nested. The loop

counters for all loops that may be nested into the loop with label K are irrelevant

and may be unequal.

Examples:
ξ((FIRST RELATIVE B WITHIN LS1 SAME_ITERATION LS1),

(TC76, UBC, 5, FIRST B, FIRST RELATIVE B WITHIN LS1 SAME_ITERATION LS1), I4) =

{}
ξ((FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC77, UBC, 5, FIRST B, FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{C(1,1)}
ξ((FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC78, UBC, 5, FIRST C, FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{C(1,2)}
ξ((FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS2),

(TC79, UBC, 5, FIRST C, FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS2), I4) =

{}



4.2. EXTENDED TIME CONSTRAINTS 71

ξ((FIRST RELATIVE B WITHIN LS1 SAME_ITERATION LS1),

(TC80, UBC, 5, LAST B, FIRST RELATIVE B WITHIN LS1 SAME_ITERATION LS1), I4) =

{}
ξ((FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC81, UBC, 5, LAST B, FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{C(3,1)}
ξ((FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC82, UBC, 5, LAST C, FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{}
ξ((FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS2),

(TC83, UBC, 5, LAST C, FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS2), I4) =

{}

ξ((FIRST RELATIVE B WITHIN LS1 SAME_ITERATION LS1),

(TC84, UBC, 5, EACH B, FIRST RELATIVE B WITHIN LS1 SAME_ITERATION LS1), I4) =

{}
ξ((FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC85, UBC, 5, EACH B, FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{C(1,1), C(2,1), C(3,1)}
ξ((FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC86, UBC, 5, EACH C, FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{C(1,2), C(2,2), C(3,2)}
ξ((FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS2),

(TC87, UBC, 5, EACH C, FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS2), I4) =

{}

LAST RELATIVE X WITHIN L SAME_ITERATION K

ξ((LAST RELATIV E X WITHIN L SAME_ITERATION K), tc, I) :=

{n ∈ ξ((LAST RELATIV E X WITHIN L), tc, I)|
∃s, kP , nP∀lP (s ∈ ξ(tc.source, tc, I)∧lP , kP , nP ∈ NP∧instOf(I, P )
∧ lP .T ype = LS ∧ kP .Label = K ∧ kP .T ype = LS

∧ equi(nP , n, P, I) ∧ inLoop(nP , kP , P ) ∧ inLoop(kP , lP , P )
lc(n, lP .Label, I) = lc(s, lP .Label, I) ∧
lc(n, kP .Label, I) = lc(s, kP .Label, I))}

Evaluation of the (destination) expression LAST RELATIV E X WITHIN L

SAME_ITERATION K returns all nodes n that are returned by the evaluation

of the expression LAST RELATIV E X WITHIN L and are in the same iteration

of the loop with the label K as a source node s. Node n and node s are in the

same iteration of the loop with label K if they have the same loop counter for the

loop with label K and for all other loops in which the loop with label K is nested.



72 CHAPTER 4. EXTENDED TIME CONSTRAINTS

The loop counters for all loops that may be nested into the loop with label K, are

irrelevant and may be unequal.

Examples:
ξ((LAST RELATIVE B WITHIN LS1 SAME_ITERATION LS1),

(TC88, UBC, 5, FIRST B, LAST RELATIVE B WITHIN LS1 SAME_ITERATION LS1), I4) =

{}
ξ((LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC89, UBC, 5, FIRST B, LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{C(1,2)}
ξ((LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC90, UBC, 5, FIRST C, LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{C(1,2)}
ξ((LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS2),

(TC91, UBC, 5, FIRST C, LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS2), I4) =

{}

ξ((LAST RELATIVE B WITHIN LS1 SAME_ITERATION LS1),

(TC92, UBC, 5, LAST B, LAST RELATIVE B WITHIN LS1 SAME_ITERATION LS1), I4) =

{}
ξ((LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC93, UBC, 5, LAST B, LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{C(3,3)}
ξ((LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC94, UBC, 5, LAST C, LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{}
ξ((LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS2),

(TC95, UBC, 5, LAST C, LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS2), I4) =

{}

ξ((LAST RELATIVE B WITHIN LS1 SAME_ITERATION LS1),

(TC96, UBC, 5, EACH B, LAST RELATIVE B WITHIN LS1 SAME_ITERATION LS1), I4) =

{}
ξ((LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC97, UBC, 5, EACH B, LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{C(1,2), C(2,2), C(3,3)}
ξ((LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC98, UBC, 5, EACH C, LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{C(1,2), C(2,2), C(3,3)}
ξ((LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS2),

(TC99, UBC, 5, EACH C, LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS2), I4) =

{}



4.2. EXTENDED TIME CONSTRAINTS 73

EACH RELATIVE X WITHIN L SAME_ITERATION K

ξ((EACH RELATIV E X WITHIN L SAME_ITERATION K), tc, I) :=

{n ∈ ξ((EACH RELATIV E X WITHIN L), tc, I)|
∃s, kP , nP∀lP (s ∈ ξ(tc.source, tc, I)∧lP , kP , nP ∈ NP∧instOf(I, P )
∧ lP .T ype = LS ∧ kP .Label = K ∧ kP .T ype = LS

∧ equi(nP , n, P, I) ∧ inLoop(nP , kP , P ) ∧ inLoop(kP , lP , P )
lc(n, lP .Label, I) = lc(s, lP .Label, I) ∧
lc(n, kP .Label, I) = lc(s, kP .Label, I))}

Evaluation of the (destination) expression EACH RELATIV E X WITHIN L

SAME_ITERATION K returns all nodes n that are returned by the evaluation

of the expression EACH RELATIV E X WITHIN L and are in the same iteration

of the loop with the label K as a source node s. Node n and node s are in the same

iteration of the loop with labelK if they have the same loop counter for the loop with

label K and for all other loops in which the loop with label K is nested. The loop

counters for all loops that may be nested into the loop with label K are irrelevant

and may be unequal.

Examples:
ξ((EACH RELATIVE B WITHIN LS1 SAME_ITERATION LS1),

(TC100, UBC, 5, FIRST B, EACH RELATIVE B WITHIN LS1 SAME_ITERATION LS1), I4) =

{}
ξ((EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC101, UBC, 5, FIRST B, EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{C(1,1), C(1,2)}
ξ((EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC102, UBC, 5, FIRST C, EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{C(1,2)}
ξ((EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS2),

(TC103, UBC, 5, FIRST C, EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS2), I4) =

{}

ξ((EACH RELATIVE B WITHIN LS1 SAME_ITERATION LS1),

(TC104, UBC, 5, LAST B, EACH RELATIVE B WITHIN LS1 SAME_ITERATION LS1), I4) =

{}
ξ((EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC105, UBC, 5, LAST B, EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{C(3,1), C(3,2), C(3,3)}
ξ((EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC106, UBC, 5, LAST C, EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{}



74 CHAPTER 4. EXTENDED TIME CONSTRAINTS

ξ((EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS2),

(TC107, UBC, 5, LAST C, EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS2), I4) =

{}

ξ((EACH RELATIVE B WITHIN LS1 SAME_ITERATION LS1),

(TC108, UBC, 5, EACH B, EACH RELATIVE B WITHIN LS1 SAME_ITERATION LS1), I4) =

{}
ξ((EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC109, UBC, 5, EACH B, EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{C(1,1), C(1,2), C(2,1), C(2,2), C(3,1), C(3,2), C(3,3)}
ξ((EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS1),

(TC110, UBC, 5, EACH C, EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{C(1,2), C(2,2), C(3,2), C(3,3)}
ξ((EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS2),

(TC111, UBC, 5, EACH C, EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS2), I4) =

{}

FIRST RELATIVE X WITHIN L NEXT_ITERATION K

ξ((FIRST RELATIV E X WITHIN L NEXT_ITERATION K), tc, I) :=

{n ∈ ξ((FIRST RELATIV E X WITHIN L), tc, I)|
∃s, kP , nP∀lP (s ∈ ξ(tc.source, tc, I)∧lP , kP , nP ∈ NP∧instOf(I, P )
∧ lP .T ype = LS ∧ kP .Label = K ∧ kP .T ype = LS

∧ equi(nP , n, P, I) ∧ inLoop(nP , kP , P ) ∧ inLoop(kP , lP , P )
lc(n, lP .Label, I) = lc(s, lP .Label, I) ∧
lc(n, kP .Label, I) = lc(s, kP .Label, I) + 1)}

Evaluation of the (destination) expression FIRST RELATIV E X WITHIN L

NEXT_ITERATION K returns all nodes n that are returned by the evaluation

of the expression FIRST RELATIV E X WITHIN L and are in the succeeding

iteration of the loop with the label K as a source node s. Node n is in the succeeding

iteration of the loop with label K in respect to node s if i) the loop counter of node

n for the loop with label K (cnK) is greater by 1 than the loop counter of node s for

the loop with label K (csK) and ii) the loop counters for all other loops in which the

loop with label K is nested are the same. The loop counters for all loops that may

be nested into the loop with label K are irrelevant and may be unequal.



4.2. EXTENDED TIME CONSTRAINTS 75

Examples:
ξ((FIRST RELATIVE B WITHIN LS1 NEXT_ITERATION LS1),

(TC112, UBC, 5, FIRST B, FIRST RELATIVE B WITHIN LS1 NEXT_ITERATION LS1), I4) =

{B(2,0)}
ξ((FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC113, UBC, 5, FIRST B, FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{C(2,1)}
ξ((FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC114, UBC, 5, FIRST C, FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{C(2,1)}
ξ((FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS2),

(TC115, UBC, 5, FIRST C, FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS2), I4) =

{C(1,2)}

ξ((FIRST RELATIVE B WITHIN LS1 NEXT_ITERATION LS1),

(TC116, UBC, 5, LAST B, FIRST RELATIVE B WITHIN LS1 NEXT_ITERATION LS1), I4) =

{}
ξ((FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC117, UBC, 5, LAST B, FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{}
ξ((FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC118, UBC, 5, LAST C, FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{}
ξ((FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS2),

(TC119, UBC, 5, LAST C, FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS2), I4) =

{}

ξ((FIRST RELATIVE B WITHIN LS1 NEXT_ITERATION LS1),

(TC120, UBC, 5, EACH B, FIRST RELATIVE B WITHIN LS1 NEXT_ITERATION LS1), I4) =

{B(2,0), B(3,0)}
ξ((FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC121, UBC, 5, EACH B, FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{C(2,1), C(3,1)}
ξ((FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC122, UBC, 5, EACH C, FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{C(2,1), C(3,1)}
ξ((FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS2),

(TC123, UBC, 5, EACH C, FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS2), I4) =

{C(1,2), C(2,2), C(3,2), C(3,3)}



76 CHAPTER 4. EXTENDED TIME CONSTRAINTS

LAST RELATIVE X WITHIN L NEXT_ITERATION K

ξ((LAST RELATIV E X WITHIN L NEXT_ITERATION K), tc, I) :=

{n ∈ ξ((LAST RELATIV E X WITHIN L), tc, I)|
∃s, kP , nP∀lP (s ∈ ξ(tc.source, tc, I)∧lP , kP , nP ∈ NP∧instOf(I, P )
∧ lP .T ype = LS ∧ kP .Label = K ∧ kP .T ype = LS

∧ equi(nP , n, P, I) ∧ inLoop(nP , kP , P ) ∧ inLoop(kP , lP , P )
lc(n, lP .Label, I) = lc(s, lP .Label, I) ∧
lc(n, kP .Label, I) = lc(s, kP .Label, I) + 1)}

Evaluation of the (destination) expression LAST RELATIV E X WITHIN L

NEXT_ITERATION K returns all nodes n that are returned by the evaluation

of the expression LAST RELATIV E X WITHIN L and are in the succeeding

iteration of the loop with the label K as a source node s. Node n is in the succeeding

iteration of the loop with label K in respect to node s if i) the loop counter of node

n for the loop with label K (cnK) is greater by 1 than the loop counter of node s for

the loop with label K (csK) and ii) the loop counters for all other loops in which the

loop with label K is nested are the same. The loop counters for all loops that may

be nested into the loop with label K are irrelevant and may be unequal.

Examples:
ξ((LAST RELATIVE B WITHIN LS1 NEXT_ITERATION LS1),

(TC124, UBC, 5, FIRST B, LAST RELATIVE B WITHIN LS1 NEXT_ITERATION LS1), I4) =

{B(2,0)}
ξ((LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC125, UBC, 5, FIRST B, LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{C(2,2)}
ξ((LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC126, UBC, 5, FIRST C, LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{C(2,2)}
ξ((LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS2),

(TC127, UBC, 5, FIRST C, LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS2), I4) =

{C(1,2)}

ξ((LAST RELATIVE B WITHIN LS1 NEXT_ITERATION LS1),

(TC128, UBC, 5, LAST B, LAST RELATIVE B WITHIN LS1 NEXT_ITERATION LS1), I4) =

{}
ξ((LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC129, UBC, 5, LAST B, LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{}



4.2. EXTENDED TIME CONSTRAINTS 77

ξ((LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC130, UBC, 5, LAST C, LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{}
ξ((LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS2),

(TC131, UBC, 5, LAST C, LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS2), I4) =

{}

ξ((LAST RELATIVE B WITHIN LS1 NEXT_ITERATION LS1),

(TC132, UBC, 5, EACH B, LAST RELATIVE B WITHIN LS1 NEXT_ITERATION LS1), I4) =

{B(2,0), B(3,0)}
ξ((LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC133, UBC, 5, EACH B, LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{C(2,2), C(3,3)}
ξ((LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC134, UBC, 5, EACH C, LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{C(2,2), C(3,3)}
ξ((LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS2),

(TC135, UBC, 5, EACH C, LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS2), I4) =

{C(1,2), C(2,2), C(3,2), C(3,3)}

EACH RELATIVE X WITHIN L NEXT_ITERATION K

ξ((EACH RELATIV E X WITHIN L NEXT_ITERATION K), tc, I) :=

{n ∈ ξ((EACH RELATIV E X WITHIN L), tc, I)|
∃s, kP , nP∀lP (s ∈ ξ(tc.source, tc, I)∧lP , kP , nP ∈ NP∧instOf(I, P )
∧ lP .T ype = LS ∧ kP .Label = K ∧ kP .T ype = LS

∧ equi(nP , n, P, I) ∧ inLoop(nP , kP , P ) ∧ inLoop(kP , lP , P )
lc(n, lP .Label, I) = lc(s, lP .Label, I) ∧
lc(n, kP .Label, I) = lc(s, kP .Label, I) + 1)}

Evaluation of the (destination) expression EACH RELATIV E X WITHIN L

NEXT_ITERATION K returns all nodes n that are returned by the evaluation

of the expression EACH RELATIV E X WITHIN L and are in the succeeding

iteration of the loop with the label K as a source node s. Node n is in the succeeding

iteration of the loop with label K in respect to node s if i) the loop counter of node

n for the loop with label K (cnK) is greater by 1 than the loop counter of node s for

the loop with label K (csK) and ii) the loop counters for all other loops in which the

loop with label K is nested are the same. The loop counters for all loops that may

be nested into the loop with label K are irrelevant and may be unequal.



78 CHAPTER 4. EXTENDED TIME CONSTRAINTS

Examples:
ξ((EACH RELATIVE B WITHIN LS1 NEXT_ITERATION LS1),

(TC136, UBC, 5, FIRST B, EACH RELATIVE B WITHIN LS1 NEXT_ITERATION LS1), I4) =

{B(2,0)}
ξ((EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC137, UBC, 5, FIRST B, EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{C(2,1), C(2,2)}
ξ((EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC138, UBC, 5, FIRST C, EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{C(2,1), C(2,2)}
ξ((EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS2),

(TC139, UBC, 5, FIRST C, EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS2), I4) =

{C(1,2)}

ξ((EACH RELATIVE B WITHIN LS1 NEXT_ITERATION LS1),

(TC140, UBC, 5, LAST B, EACH RELATIVE B WITHIN LS1 NEXT_ITERATION LS1), I4) =

{}
ξ((EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC141, UBC, 5, LAST B, EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{}
ξ((EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC142, UBC, 5, LAST C, EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{}
ξ((EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS2),

(TC143, UBC, 5, LAST C, EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS2), I4) =

{}

ξ((EACH RELATIVE B WITHIN LS1 NEXT_ITERATION LS1),

(TC144, UBC, 5, EACH B, EACH RELATIVE B WITHIN LS1 NEXT_ITERATION LS1), I4) =

{B(2,0), B(3,0)}
ξ((EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC145, UBC, 5, EACH B, EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{C(2,1), C(2,2), C(3,1), C(3,2), C(3,3)}
ξ((EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS1),

(TC146, UBC, 5, EACH C, EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{C(2,1), C(2,2), C(3,1), C(3,2), C(3,3)}
ξ((EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS2),

(TC147, UBC, 5, EACH C, EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS2), I4) =

{C(1,2), C(2,2), C(3,2), C(3,3)}



4.3. ATOMIC TIME CONSTRAINTS 79

In this section, we de�ned the semantics of source and destination expressions

and which node result sets are returned by evaluation of an expression. In time

management, however, we want to be able to de�ne time constraints between two

single nodes. We introduce Atomic Time Constraints that constrain two particular

nodes in an Instance Type to a given allowed min/max temporal distance. For each

Extended Time Constraint, there is a set of derived Atomic Time Constraints. We

de�ne and describe Atomic Time Constraints in the next section.

4.3 Atomic Time Constraints

The source and destination speci�cations in an Extended Time Constraint, and

the resulting node sets form the basis for so called Atomic Time Constraints that

are relations between the source and destination result sets ξ(tc.source, tc, I) and

ξ(tc.destination, tc, I). In an Atomic Time Constraint, the source and the destina-

tion are each a particular node in an Instance Type I. The source and the destination

speci�cation in an Atomic Time Constraint therefore contains only a nodeLabel and

an LCV . We de�ne an Atomic Time Constraint as follows:

De�nition 4.6. (Atomic Time Constraint (ATC))

An Atomic Time Constraint atc ∈ ATCI in an Instance Type I is a quintuple

(ID, type, δ, source, destination) that constrains the temporal relation between the

de�ned source node and destination node to a maximum of δ time units if type is

UBC, or to a minimum of δ time units if type is LBC.

The source node and the destination node in an Atomic Time Constraint are

speci�ed by the nodeLabel and the LCV .

Each source-destination pair of nodes in an Atomic Time Constraint atc ∈ ATCI
that is derived from an Extended Time Constraint tc ∈ TCP , is an element of

a subset of the cartesian product of ξ(tc.source, tc, I) and ξ(tc.destination, tc, I):

ATCtc
I ⊆ ξ(tc.source, tc, I) × ξ(tc.destination, tc, I). Other attributes (ID, type,

and δ) of a derived Atomic Time Constraint are the same as in the corresponding

Extended Time Constraint tc. The function atomize(tc, I) creates a set of Atomic

Time Constraints for the given Extended Time Constraint tc in the given Instance

Type I and is de�ned as follows:



80 CHAPTER 4. EXTENDED TIME CONSTRAINTS

atomize(tc, I) :



case 1 : tc.destination.relation = ABSOLUTEa

(tc, I) 7→ {(tc.ID, tc.type, tc.δ, s, d) | s ∈ ξ(tc.source, tc, I)

∧ d ∈ ξ(tc.destination, tc, I) ∧ s 6= d}

case 2 : tc.destination.relation = RELATIV E

∧tc.destination.quantifier 6= FIRST

∧tc.destination.iterationRef.iteration = ””

(tc, I) 7→ {(tc.ID, tc.type, tc.δ, s, d) | s ∈ ξ(tc.source, tc, I)

∧ d ∈ ξ(tc.destination, tc, I) ∧ (s < d)}

case 3 : tc.destination.relation = RELATIV E

∧tc.destination.quantifier = FIRST

∧tc.destination.iterationRef.iteration = ””

(tc, I) 7→ {(tc.ID, tc.type, tc.δ, s, d) | s ∈ ξ(tc.source, tc, I)

∧ d ∈ ξ(tc.destination, tc, I) ∧ (s < d)

∧ @d′(d′ ∈ ξ(tc.destination, tc, I) ∧ s < d′ < d)}

case 4 : tc.destination.relation = RELATIV E

∧tc.destination.quantifier 6= FIRST

∧tc.destination.iterationRef.iteration = SAME_ITERATION

(tc, I) 7→ {(tc.ID, tc.type, tc.δ, s, d) | s ∈ ξ(tc.source, tc, I)

∧ d ∈ ξ(tc.destination, tc, I) ∧ (s < d)

∧ ∀kP , lP , sP , dP (kP , lP , sP , dP ∈ NP ∧ instOf(I, P )

∧ kP .T ype = LS ∧ lP .T ype = LS

∧ kP .Label = tc.destination.iterationRef.loopLabel

∧ equi(sP , s, P, I) ∧ equi(dP , d, P, I)

∧ inLoop(sP , kP , P ) ∧ inLoop(dP , kP , P ) ∧ inLoop(kP , lP , P )

∧ lc(s, kP .Label, I) = lc(d, kP .Label, I)

∧ lc(s, lP .Label, I) = lc(d, lP .Label, I)}
...

aRemember that the default relation is ABSOLUTE, therefore destination expressions
without a relation are handled as ABSOLUTE.



4.3. ATOMIC TIME CONSTRAINTS 81

atomize(tc, I) :



...

case 5 : tc.destination.relation = RELATIV E

∧tc.destination.quantifier = FIRST

∧tc.destination.iterationRef.iteration = SAME_ITERATION

(tc, I) 7→ {(tc.ID, tc.type, tc.δ, s, d) | s ∈ ξ(tc.source, tc, I)

∧ d ∈ ξ(tc.destination, tc, I) ∧ (s < d)

∧ ∀kP , lP , sP , dP (kP , lP , sP , dP ∈ NP ∧ instOf(I, P )

∧ kP .T ype = LS ∧ lP .T ype = LS

∧ kP .Label = tc.destination.iterationRef.loopLabel

∧ equi(sP , s, P, I) ∧ equi(dP , d, P, I)

∧ inLoop(sP , kP , P ) ∧ inLoop(dP , kP , P ) ∧ inLoop(kP , lP , P )

∧ lc(s, kP .Label, I) = lc(d, kP .Label, I)

∧ lc(s, lP .Label, I) = lc(d, lP .Label, I)

∧ @d′(d′ ∈ ξ(tc.destination, tc, I) ∧ s < d′ < d)}

case 6 : tc.destination.relation = RELATIV E

∧tc.destination.quantifier 6= FIRST

∧tc.destination.iterationRef.iteration = NEXT_ITERATION

(tc, I) 7→ {(tc.ID, tc.type, tc.δ, s, d) | s ∈ ξ(tc.source, tc, I)

∧ d ∈ ξ(tc.destination, tc, I) ∧ (s < d)

∧ ∀kP , lP , sP , dP (kP , lP , sP , dP ∈ NP ∧ instOf(I, P )

∧ kP .T ype = LS ∧ lP .T ype = LS

∧ kP .Label = tc.destination.iterationRef.loopLabel

∧ equi(sP , s, P, I) ∧ equi(dP , d, P, I)

∧ inLoop(sP , kP , P ) ∧ inLoop(dP , kP , P ) ∧ inLoop(kP , lP , P )

∧ lc(s, kP .Label, I) = lc(d, kP .Label, I)− 1

∧ lc(s, lP .Label, I) = lc(d, lP .Label, I)}
...



82 CHAPTER 4. EXTENDED TIME CONSTRAINTS

atomize(tc, I) :



...

case 7 : tc.destination.relation = RELATIV E

∧tc.destination.quantifier = FIRST

∧tc.destination.iterationRef.iteration = NEXT_ITERATION

(tc, I) 7→ {(tc.ID, tc.type, tc.δ, s, d) | s ∈ ξ(tc.source, tc, I)

∧ d ∈ ξ(tc.destination, tc, I) ∧ (s < d)

∧ ∀kP , lP , sP , dP (kP , lP , sP , dP ∈ NP ∧ instOf(I, P )

∧ kP .T ype = LS ∧ lP .T ype = LS

∧ kP .Label = tc.destination.iterationRef.loopLabel

∧ equi(sP , s, P, I) ∧ equi(dP , d, P, I)

∧ inLoop(sP , kP , P ) ∧ inLoop(dP , kP , P ) ∧ inLoop(kP , lP , P )

∧ lc(s, kP .Label, I) = lc(d, kP .Label, I)− 1

∧ lc(s, lP .Label, I) = lc(d, lP .Label, I)

∧ @d′(d′ ∈ ξ(tc.destination, tc, I) ∧ s < d′ < d)}

In the previous section, we delivered examples of 147 Extended Time Constraints

and their resulting source and destination node sets. Here we deliver examples of

results of the atomization function atomize(tc, I) for various Extended Time Con-

straints tc and Instance Types I. The results of atomize((TC23, UBC, 5, EACH B,

FIRST RELATIVE C), I4) and atomize((TC23, UBC, 5, EACH B, FIRST RELA-

TIVE C), I5) are additionally represented graphically in �gures 4.10 and 4.11.

Case 1: tc.destination.relation = ABSOLUTE
atomize((TC148, UBC, 5, FIRST B, LAST C), I4)=

{(TC148, UBC, 5, B(1,0), C(3,3))}
atomize((TC149, UBC, 5, EACH B, FIRST C), I4)=

{(TC149, UBC, 5, B(1,0), C(1,1)), (TC149, UBC, 5, B(2,0), C(1,1)), (TC149, UBC, 5, B(3,0), C(1,1))}
atomize((TC150, UBC, 5, FIRST C WITHIN LS2, EACH B), I4)=

{(TC150, UBC, 5, C(1,1), B(1,0)), (TC150, UBC, 5, C(1,1), B(2,0)), (TC150, UBC, 5, C(1,1), B(3,0)),

(TC150, UBC, 5, C(2,1), B(1,0)), (TC150, UBC, 5, C(2,1), B(2,0)), (TC150, UBC, 5, C(2,1), B(3,0)),

(TC150, UBC, 5, C(3,1), B(1,0)), (TC150, UBC, 5, C(3,1), B(2,0)), (TC150, UBC, 5, C(3,1), B(3,0))}
atomize((TC151, UBC, 5, FIRST C WITHIN LS1, FIRST C WITHIN LS2), I4)=

{(TC151, UBC, 5, C(1,1), C(2,1)), (TC151, UBC, 5, C(1,1), C(3,1))}



4.3. ATOMIC TIME CONSTRAINTS 83

Figure 4.10: Result of the atomization function for TC23 on I4

Figure 4.11: Result of the atomization function for TC23 on I5



84 CHAPTER 4. EXTENDED TIME CONSTRAINTS

Case 2: tc.destination.relation = RELATIVE
∧ tc.destination.quanti�er 6= FIRST
∧ tc.destination.iterationRef.iteration = ""

atomize((TC27, UBC, 5, FIRST B, LAST RELATIVE C), I4)=

{(TC27, UBC, 5, B(1,0), C(3,3))}
atomize((TC152, UBC, 5, FIRST C WITHIN LS2, EACH RELATIVE B), I4)=

{(TC152, UBC, 5, C(1,1), B(2,0)), (TC152, UBC, 5, C(1,1), B(3,0)), (TC152, UBC, 5, C(2,1), B(3,0))}

Case 3: tc.destination.relation = RELATIVE
∧ tc.destination.quanti�er = FIRST
∧ tc.destination.iterationRef.iteration = ""

atomize((TC23, UBC, 5, EACH B, FIRST RELATIVE C), I4)=

{(TC23, UBC, 5, B(1,0), C(1,1)), (TC23, UBC, 5, B(2,0), C(2,1)), (TC23, UBC, 5, B(3,0), C(3,1))}
atomize((TC23, UBC, 5, EACH B, FIRST RELATIVE C), I5)=

{(TC23, UBC, 5, B(1,0), C(2,1)), (TC23, UBC, 5, B(2,0), C(2,1)), (TC23, UBC, 5, B(3,0), C(3,1))}
atomize((TC153, UBC, 5, FIRST C WITHIN LS1, FIRST RELATIVE C WITHIN LS2), I4)=

{(TC153, UBC, 5, C(1,1), C(2,1)), (TC153, UBC, 5, C(1,1), C(3,1))}

Case 4: tc.destination.relation = RELATIVE
∧ tc.destination.quanti�er 6= FIRST
∧ tc.destination.iterationRef.iteration = SAME_ITERATION

atomize((TC97, UBC, 5, EACH B, LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{(TC97, UBC, 5, B(1,0), C(1,2)), (TC97, UBC, 5, B(2,0), C(2,2)), (TC97, UBC, 5, B(3,0), C(3,3))}
atomize((TC98, UBC, 5, EACH C, LAST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{(TC98, UBC, 5, C(1,1), C(1,2)), (TC98, UBC, 5, C(2,1), C(2,2)), (TC98, UBC, 5, C(3,1), C(3,3))}
atomize((TC102, UBC, 5, FIRST C, EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{(TC102, UBC, 5, C(1,1), C(1,2))}
atomize((TC105, UBC, 5, LAST B, EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{(TC105, UBC, 5, B(3,0), C(3,1)), (TC105, UBC, 5, B(3,0), C(3,2)), (TC105, UBC, 5, B(3,0), C(3,3))}
atomize((TC110, UBC, 5, EACH C, EACH RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{(TC110, UBC, 5, C(1,1), C(1,2)), (TC110, UBC, 5, C(2,1), C(2,2)), (TC110, UBC, 5, C(3,1), C(3,2)),

(TC110, UBC, 5, C(3,1), C(3,3))}

Case 5: tc.destination.relation = RELATIVE
∧ tc.destination.quanti�er = FIRST
∧ tc.destination.iterationRef.iteration = SAME_ITERATION

atomize((TC85, UBC, 5, EACH B, FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{(TC85, UBC, 5, B(1,0), C(1,1)), (TC85, UBC, 5, B(2,0), C(2,1)), (TC85, UBC, 5, B(3,0), C(3,1))}
atomize((TC86, UBC, 5, EACH C, FIRST RELATIVE C WITHIN LS1 SAME_ITERATION LS1), I4) =

{(TC86, UBC, 5, C(1,1), C(1,2)), (TC86, UBC, 5, C(2,1), C(2,2)), (TC86, UBC, 5, C(3,1), C(3,2))}

Case 6: tc.destination.relation = RELATIVE
∧ tc.destination.quanti�er 6= FIRST
∧ tc.destination.iterationRef.iteration = NEXT_ITERATION

atomize((TC133, UBC, 5, EACH B, LAST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{(TC133, UBC, 5, B(1,0), C(2,2)), (TC133, UBC, 5, B(2,0), C(3,3)) }
atomize((TC147, UBC, 5, EACH C, EACH RELATIVE C WITHIN LS1 NEXT_ITERATION LS2), I4) =

{(TC147, UBC, 5, C(1,1), C(1,2)), (TC147, UBC, 5, C(2,1), C(2,2)), (TC147, UBC, 5, C(3,1), C(3,2)),

(TC147, UBC, 5, C(3,2), C(3,3))}



4.3. ATOMIC TIME CONSTRAINTS 85

Case 7: tc.destination.relation = RELATIVE
∧ tc.destination.quanti�er = FIRST
∧ tc.destination.iterationRef.iteration = NEXT_ITERATION

atomize((TC121, UBC, 5, EACH B, FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS1), I4) =

{(TC121, UBC, 5, B(1,0), C(2,1)), (TC121, UBC, 5, B(2,0), C(3,1)) }
atomize((TC123, UBC, 5, EACH C, FIRST RELATIVE C WITHIN LS1 NEXT_ITERATION LS2), I4) =

{(TC123, UBC, 5, C(1,1), C(1,2)), (TC123, UBC, 5, C(2,1), C(2,2)), (TC123, UBC, 5, C(3,1), C(3,2)),

(TC123, UBC, 5, C(3,2), C(3,3))}

In this chapter, we described the basic models that we use as a starting point for

time management in processes with loops. Furthermore, we introduced Extended

Time Constraints (ETCs) that enable the speci�cation of allowed temporal lower

and/or upper bounds (time lags) between two activities, where at least one of them

appears in a loop. At the end of this chapter, we covered the atomization function

that transforms a given ETC into a set of Atomic Time Constraints (ATCs) for a

given Instance Type. At runtime, all e�ects of ETCs are the same as the e�ects of

the execution of an acyclic process with lower and upper bound constraints, since

ETCs have to be translated into ATCs at runtime.

With ETCs and their transformation into ATCs, we introduced a novel projection

of time pattern TP1: Time Lags between two Activities [LWR14] to cyclic processes

and with it we extended the time pattern TP9: Cyclic Elements and laid its formal

foundation. What we do not cover with ETCs are all other time patterns (TP2:

Durations, TP3: Time Lags between Arbitrary Events, TP4: Fixed Date Elements,

TP5: Schedule Restricted Elements, TP6: Time-based Restrictions, TP7: Validity

Period, TP8: Time-dependent Variability, and TP10: Periodicity).

During our research, we discovered that - due to the uncertainty of unbounded

loops and XORs that are placed in a loop - it is impossible to unfold the loops step

by step and at the same time transform the Extended Time Constraints into Atomic

Time Constraints. In order to be able to manage time in processes with loops, we

developed a pre-step that tests if a process with loops must terminate in order to

satisfy all Extended Time Constraints. We call this test the Termination Check and

describe it in the following chapter.



86 CHAPTER 4. EXTENDED TIME CONSTRAINTS

Termination Check can enable time management in cyclic business processes in

various approaches. For example, process time management, as introduced by Eder

et al. in [EPPR99], can be applied on a cyclic process that passed the Termination

Check and was unfolded (transformed) into an acyclic process. Combi et al. already

do handle loops by transforming loops and related temporal constraints into condi-

tional blocks (XORs) [CGPP12, CGMP12, LPCR13, CGMP14]. However, they limit

the maximum number of loop iterations already in the process model. In order to

determine a more accurate maximum number of loop iterations for loops that are

not actually bounded by an explicit condition, Termination Check could help.

The Termination Check divides cyclic processes into two groups: 1) cyclic pro-

cesses that can iterate in�nitely but still satisfy all temporal constraints and 2)

cyclic processes that have to terminate in order not to violate any of the temporal

constraints. This characteristic helps us to sort out the cyclic processes that fall into

�rst group, since they do not have a limit of the number of loop iterations that can

be derived from temporal constraints. Cyclic processes that fall into second group do

have a maximum number of loop iterations, constrained by its temporal constraints.

In such a cyclic process, the maximum number of loop iterations can be calculated.

After determining the number of maximum iterations for each loop, the loops can

be transformed into conditional blocks as usual and if transformed into CSTNUs,

dynamic controllability can be checked as well, as introduced by Hunsberger et al.

in [HPC12].



Chapter 5

Termination Check for Cyclic

Processes

In this chapter, we introduce the Termination Check which tests whether a given

cyclic process must terminate in order to satisfy all speci�ed Extended Time Con-

straints or not. Termination Check is a useful test to sort out the processes that

can run forever before further process time management steps are taken. Process

time management (e.g. as described in [EPPR99]) can only be applied to processes

that have tested positive in the Termination Check. After the Termination Check,

there are still a few steps to go before existing time management algorithms can be

applied. E.g., a process must �rst be unfolded into an acyclic process, where loops

are transformed into nested XORs. The unfolding process itself must cope with the

problem of which loop gets unfolded and how often. This problem can be solved

by an exploration of a search space with unfolded (acyclic) processes with di�erent

numbers of loop iterations for each loop. However, we postpone this challenge as

future work and focus on the Termination Check in this thesis.

To understand the Termination Check, let us �rst observe a few examples. Figure

5.1 shows a process with one loop and an Extended Time Constraint (ETC) that

is placed between the �rst and the last activity over the loop. The �gure further

shows three Instance Types derived from the given process. Now let us assume that

activities A and C in the process have a duration of 10 days and activity B 30 days.

In the �rst Instance Type, activity C ends 40 days after A has ended, in the second

Instance Type 70 days after, and in the third Instance Type 100 days after.

87



88 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

The given ETC (TC158, UBC, 90, A, C) is satis�ed for the �rst and the second

Instance Types. However, in an Instance Type with three or more loop iterations,

the ETC can not be satis�ed. This means that the loop (and therefore the process)

must terminate in order to satisfy the given ETC. The Termination Check for this

process is positive.

Figure 5.1: Example 1 � positive Termination Check



89

In the process in �gure 5.2, the ETC (TC154, UBC, 90, F IRST B, C) represents

the upper bound between the end of the �rst appearance of activity B and the end

of activity C. This ETC behaves like the ETC from �gure 5.1 and binds the number

of loop iterations to a maximum of 3. In an Instance Type with 4 appearances of

activity B, C would end 100 days after the �rst appearance of activity B and the

ETC would have been violated. Since the number of loop iterations is bounded by

the ETC, the Termination Check for this process is positive.

Figure 5.2: Example 2 � positive Termination Check



90 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

The ETC (TC159, UBC, 90, A, LAST B) from �gure 5.3 represents the upper

bound between activity A and the last appearance of activity B. Also this ETC

behaves like the ETC from �gure 5.1 and binds the number of loop iterations to a

maximum of 3. In an Instance Type with 4 appearances of activity B, the last B

would end 120 days after the activity A and the ETC would have been violated.

Also here, the number of loop iterations is bounded by the ETC and therefore the

Termination Check for this process is positive.

Figure 5.3: Example 3 � positive Termination Check



91

The process in �gure 5.4 has to satisfy the ETC (TC160, UBC, 90, A, FIRST B)

between activity A and the �rst appearance of activity B. After the �rst appearance

of activity B, there can be in�nitely more appearances of B and the ETC would

still be satis�ed. This means that the process does not have to terminate in order to

satisfy the given ETC. The Termination Check for this process is negative.

Figure 5.4: Example 4 � negative Termination Check



92 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

Now that we know, what the Termination Check aims to test, let us move on to the

Termination Check itself.

The Termination Check is a process that consists of three steps:

1. Process transformation

2. Time constraints inference

3. Termination check

In the �rst step, we transform a cyclic process into an acyclic process with a

sequence of three loop iterations instead of a loop and instantiated Atomic Time

Constraints (ATCs). We call this transformed process a 3-iterated Process Graph (3-

iPG). In the second step, we infer all possible time constraints from the instantiated

ATCs. These two steps form the basis for the third step � termination check in a

narrower sense. In this last step, we check for each loop if there is an inferred time

constraints that binds the loop. We describe each step in detail in the following

sections.



5.1. PROCESS TRANSFORMATION 93

5.1 Process Transformation

In the �rst step of the Termination Check, we simulate three iterations of each loop

in a cyclic process. We do that by transforming each loop into a sequence of three

loop iterations. We call the transformed process graph a 3-iterated Process Graph.

The idea behind this step, inspired by the Pumping lemma for regular languages

[RS59, BHPS61], is that each loop execution has a �rst iteration, a last iteration, and

an arbitrary number of iterations in between. Each of those three iteration blocks

can also be "empty", meaning that the number of iterations of a loop is smaller than

3. Each of the three loop blocks (�rst, last, and everything in between) is represented

by one iteration in the transformed process.

Figure 5.5 shows the process transformation of a minimal process. Note that after

the last iteration of the loop, there is another LS-node. This is obviously the case,

because after each last iteration of a loop, the LS-node must be passed one more

time before continuing the process. Extended Time Constraints are transformed to

Atomic Time Constraints in the transformed process mostly according to the same

rules that we use for transforming ETCs to ATCs in Instance Types in chapter 4.

Figure 5.5: Minimal example of a process transformation



94 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

We de�ne and describe the transformation of a process graph into a 3-iterated

Process Graph in subsection 5.1.1, and the transformation of Extended Time Con-

straints in subsection 5.1.2.

5.1.1 Process Graph Transformation

A 3-iterated Process Graph (3-iPG), which we de�ne in this subsection, is a process

graph with 3 iterations of each loop. This iterations are unfolded into sequences

and not nested LOOP-XOR-blocks as in a Loop Instance Type. Therefore, there

are no LOOP-XOR-split nodes and no LOOP-XOR-join nodes in a 3-iPG. For this

reason we adapt the predicate equi(x, x′, P, P ′) from chapter 4 to a stricter version

as follows:

sEqui(x, x′, P, P ′) := x ∈ NP ∧x′ ∈ NP ′∧x.Label = x′.Label∧x.Type = x′.T ype

We de�ne a 3-iterated Process Graph that we use for the Termination Check, as

follows:

De�nition 5.1. (3-iterated Process Graph (3-iPG)) A 3-iterated Process Graph

(3-iPG) of a process graph P is a directed acyclic process graph I = (NI , EI) that

is derived from the process graph P . Each node n ∈ NI has a label n.Label, a type

n.Type, and a positive integer counter n.C. A directed acyclic graph I is called a

valid 3-iterated Process Graph of a process graph P (3iPGOf(I,P)) if it satis�es all

following rules:

Rule 1 - non-loop nodes:

For each node n in P that does not appear in a loop, and is not a LOOP-split or a

LOOP-join node, there is a derived node n′ with the counter n′.C = 0.

∀n, s∃n′(n, s ∈ NP ∧ n′ ∈ NI ∧ n.Type 6= LS ∧ n.Type 6= LJ ∧ s.Type = LS

∧ ¬inLoop(n, s, P ) ∧ sEqui(n, n′, P, I) ∧ n′.C = 0



5.1. PROCESS TRANSFORMATION 95

Rule 2 - LOOP-split nodes:

For each node p′ in I that is equivalent to p in P that is a direct predecessor of a

LOOP-split node ls in P , and not a LOOP-join node, there are 4 derived nodes ls′

with the counter ls′.C = p′.C ∗ 10 + x, where x is an integer between 1 and 4.

∀ls, p, p′, x∃ls′(ls, p ∈ NP ∧ ls′, p′ ∈ NI ∧ x ∈ {1, 2, 3, 4}
∧ ls.Type = LS ∧ p.Type 6= LJ ∧ sEqui(ls, ls′, P, I) ∧ sEqui(p, p′, P, I)
∧ dpred(p, ls, P ) ∧ ls′.C = p′.C ∗ 10 + x

Rule 3 - LOOP-join nodes:

For each LOOP-split node ls′ in I with a counter ls′.C with a remainder 1, 2, or 3

of the division by 10, there is a counterpart LOOP-join node lj′ in I with the same

counter.

∀ls, lj, ls′, x∃lj′(ls, lj ∈ NP ∧ ls′, lj′ ∈ NI ∧ x ∈ {1, 2, 3}
∧ ls.Type = LS ∧ lj.Type = LJ ∧ counterpart(lj, ls, P )
∧ sEqui(ls, ls′, P, I) ∧ sEqui(lj, lj′, P, I) ∧ ls′.C%10 = x ∧ lj′.C = ls′.C

Rule 4 - nodes within a loop (except LOOP-split nodes, LOOP-join nodes,

and direct successors of LOOP-split nodes):

For each node p′ in I that is equivalent to p in P , which is a direct predecessor of a

node n in P , there is a node n′ in I with the same counter as p′ with a remainder 1, 2,

or 3 of the division by 10. Node n is placed in a loop ls and is neither a LOOP-split

node nor a LOOP-join node. Neither is p a LOOP-split node.

∀n, p, p′, x∃ls, n′(n, p, ls ∈ NP ∧ n′, p′ ∈ NI ∧ x ∈ {1, 2, 3}
∧ n.Type 6= LS ∧ n.Type 6= LJ ∧ p.Type 6= LS ∧ ls.Type = LS

∧ dpred(p, n, P ) ∧ inLoop(n, ls, P ) ∧ sEqui(n, n′, P, I) ∧ sEqui(p, p′, P, I)
∧ p′.C%10 = x ∧ n′.C = p′.C



96 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

Rule 5 - true-direct-successors of a LOOP-split node (except LOOP-split

and LOOP-join nodes):

For each node p′ in I that is equivalent to p in P , which is a direct predecessor of a

node n in P , there is a node n′ in I with the same counter as p′ with a remainder 1,

2, or 3 of the division by 10. Node n is not a LOOP-split node and not a LOOP-join

node, and p is a LOOP-split node. Node n is a true-direct-successor of p.

∀n, p, p′, x∃(p, n, T ), n′(n, p ∈ NP ∧ (p, n, T ) ∈ EP ∧ n′, p′ ∈ NI ∧ x ∈ {1, 2, 3}
∧ n.Type 6= LS ∧ n.Type 6= LJ ∧ p.Type = LS

∧ dpred(p, n, P ) ∧ sEqui(n, n′, P, I) ∧ sEqui(p, p′, P, I)
∧ p′.C%10 = x ∧ n′.C = p′.C

Rule 6 - false-direct-successors of a LOOP-split node within a loop (except

LOOP-split and LOOP-join nodes):

For each node pp′ in I that is equivalent to pp in P , there is a node n′ in I with

the same counter as pp′. Node n is neither a LOOP-split node nor a LOOP-join

node. Node n is placed in a loop, and is a false-direct-successor of p. Node p is a

LOOP-split node and pp is not a LOOP-join node. Node p is a direct successor of

pp.

∀n, p, pp, p′, pp′∃ls, (p, n, F ), n′(n, p, pp, ls ∈ NP ∧ (p, n, F ) ∈ EP
∧ n′, p′, pp′ ∈ NI ∧ ls 6= p ∧ dpred(p, n, P ) ∧ dpred(pp, p, P ) ∧ inLoop(n, ls, P )
∧ n.Type 6= LS ∧ n.Type 6= LJ ∧ p.Type = LS ∧ ls.Type = LS ∧ pp.Type 6= LJ

∧ sEqui(n, n′, P, I) ∧ sEqui(p, p′, P, I) ∧ sEqui(pp, pp′, P, I) ∧ n′.C = pp′.C

Rule 7 - edges between nodes with the same counter:

For all nodes s′ and e′ in I that are derived from s and e in P and have the same

counter, there is an edge (s′, e′) in I between them if s′ is not a LOOP-join node,

and e′ is not a LOOP-split node, and if there is an edge between s and e in P .

∀s, e, s′, e′∃(s′, e′)(s, e ∈ NP ∧ s′, e′ ∈ NI ∧ (s′, e′) ∈ EI
∧ ¬(s.Type = LJ ∧ e.Type = LS) ∧ sEqui(s, s′, P, I) ∧ sEqui(e, e′, P, I)
∧ dpred(s, e, P ) ∧ s′.C = e′.C



5.1. PROCESS TRANSFORMATION 97

Rule 8 - edges between LOOP-join and LOOP-split nodes:

For all LOOP-join nodes s′ and LOOP-split nodes e′ in I that are derived from s

and e in P , there is an edge (s′, e′) in I between them if there is an edge between s

and e in P and the counter of e′ is the counter of s′ increased by 1.

∀s, e, s′, e′∃(s′, e′)(s, e ∈ NP ∧ s′, e′ ∈ NI ∧ (s′, e′) ∈ EI
∧ s.Type = LJ ∧ e.Type = LS ∧ sEqui(s, s′, P, I) ∧ sEqui(e, e′, P, I)
∧ dpred(s, e, P ) ∧ s′.C + 1 = e′.C

Rule 9 - edges between LOOP-split predecessors and LOOP-split nodes:

For all LOOP-split predecessor nodes s′ and LOOP-split nodes e′ in I that are derived

from s and e in P , there is an edge (s′, e′) in I between them if there is an edge between

s and e in P and the counter of e′ is the counter of s′ multiplied by 10 and increased

by 1.

∀s, e, s′, e′∃(s′, e′)(s, e ∈ NP ∧ s′, e′ ∈ NI ∧ (s′, e′) ∈ EI
∧ e.Type = LS ∧ sEqui(s, s′, P, I) ∧ sEqui(e, e′, P, I)
∧ dpred(s, e, P ) ∧ s′.C ∗ 10 + 1 = e′.C

Rule 10 - edges between LOOP-split and false-direct-successor:

For all LOOP-split nodes s′ and nodes e′ in I that are derived from s and e in P ,

there is an edge (s′, e′) in I between them if there is a false-edge between s and e in P

and the counter of s′ returns a remainder 4 for the division by 10, and the counter of

e′ is the counter of s′ divided by 10 (remember that the node counter is an integer).

∀s, e, s′, e′∃(s, e, F ), (s′, e′)(s, e ∈ NP ∧ (s, e, F ) ∈ EP ∧ s′, e′ ∈ NI ∧ (s′, e′) ∈ EI
∧ s.Type = LS ∧ sEqui(s, s′, P, I) ∧ sEqui(e, e′, P, I)
∧ s′.C%10 = 4 ∧ e′.C = s′.C/10



98 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

Figure 5.6 shows a more complex example of the process transformation of the

process graph from �gure 4.2 with the Extended Time Constraint (TC23, UBC, 5,

EACH B, FIRST RELATIVE C).

Figure 5.6: 3-iterated Process Graph of the process graph from �gure 4.2

Note that the Extended Time Constraint in this example can be transformed to a

set of Atomic Time Constraints in the resulting 3-iterated Process Graph according

to the rules in chapter 4. Unfortunately, this is not the case for all Extended Time

Constraints due to the di�erent structure of a 3-iterated Process Graph and an

Instance Type. The details are discussed in the next subsection.

5.1.2 Extended Time Constraints Transformation

Extended Time Constraints, that contain one of the following source expressions:

• X
• FIRST X

• LAST X

• EACH X

• FIRST X WITHIN L

• EACH X WITHIN L



5.1. PROCESS TRANSFORMATION 99

and one of the following destination expressions:

• X
• FIRST X

• LAST X

• EACH X

• EACH X WITHIN L

• FIRST RELATIV E X

• LAST RELATIV E X

• EACH RELATIV E X

• FIRST RELATIV E X WITHIN L

• LAST RELATIV E X WITHIN L

• EACH RELATIV E X WITHIN L

are transformed into Atomic Time Constraints in a 3-iterated Process Graph with

the same rules as they are in an Instance Type (see chapter 4).

Extended Time Constraints that contain the source expression FIRST X WITHIN L,

or LAST X WITHIN L, and/or one of the following destination expressions:

• FIRST X WITHIN L

• LAST X WITHIN L

• FIRST RELATIV E X WITHIN L SAME_ITERATION K

• LAST RELATIV E X WITHIN L SAME_ITERATION K

• EACH RELATIV E X WITHIN L SAME_ITERATION K

• FIRST RELATIV E X WITHIN L NEXT_ITERATION K

• LAST RELATIV E X WITHIN L NEXT_ITERATION K

• EACH RELATIV E X WITHIN L NEXT_ITERATION K

cannot be transformed into Atomic Time Constraints according to the rules presented

in chapter 4 due to the di�erent structure of a 3-iterated Process Graph and an

Instance Type.

In this subsection, we adapt the source/destination expression evaluation function

ξ(expr, tc, I) from chapter 4 for expressions listed above, such that it can be used to

reach equal semantic results in a 3-iterated Process Graph as in an Instance Type.



100 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

FIRST X WITHIN L

ξ((FIRST X WITHIN L), tc, I) := {n ∈ NI |n.Label = X ∧
(∃l, k, lP , kP , nP@m(l, k,m ∈ NI ∧ lP , kP , nP ∈ NP ∧ 3iPGOf(I, P )

∧ lP .Label = L ∧ lP .T ype = LS ∧ kP .T ype = LS

∧ equi(lP , l, P, I) ∧ equi(kP , k, P, I) ∧ equi(nP , n, P, I)
∧ closestLoop(kP , lP , P ) ∧ inLoop(nP , lP , P )

∧m.Label = X ∧ k < m < n)

∨
∃l, lP , nP@m, kP (l,m ∈ NI ∧ lP , kP , nP ∈ NP ∧ 3iPGOf(I, P )

∧ lP .Label = L ∧ lP .T ype = LS ∧ kP .T ype = LS

∧ equi(lP , l, P, I) ∧ equi(nP , n, P, I)
∧ closestLoop(kP , lP , P ) ∧ inLoop(nP , lP , P )

∧m.Label = X ∧m < n))}

Evaluation of the expression FIRST X WITHIN L on a 3-iPG di�ers from the

evaluation on an Instance Type in chapter 4 only in the predicate instOf(I, P ) that

is substituted by the predicate 3iPGOf(I, P ).

LAST X WITHIN L

ξ((LAST X WITHIN L), tc, I) := {n ∈ NI |n.Label = X ∧
(∃l, k, kj, lP , kP , nP@m(l, k, kj,m ∈ NI ∧ lP , kP , nP ∈ NP

∧ 3iPGOf(I, P ) ∧ counterpart(kj, k, P )
∧ lP .Label = L ∧ lP .T ype = LS ∧ kP .T ype = LS

∧ equi(lP , l, P, I) ∧ equi(kP , k, P, I) ∧ equi(nP , n, P, I)
∧ closestLoop(kP , lP , P ) ∧ inLoop(nP , lP , P )

∧m.Label = X ∧ n < m < kj)

∨
∃l, lP , nP@m, kP (l,m ∈ NI ∧ lP , kP , nP ∈ NP ∧ 3iPGOf(I, P )

∧ lP .Label = L ∧ lP .T ype = LS ∧ kP .T ype = LS

∧ equi(lP , l, P, I) ∧ equi(nP , n, P, I)
∧ closestLoop(kP , lP , P ) ∧ inLoop(nP , lP , P )

∧m.Label = X ∧ n < m))}



5.1. PROCESS TRANSFORMATION 101

In contrast to the evaluation of the expression LAST X WITHIN L on an Instance

Type, the evaluation on a 3-iPG is based on the same idea as the evaluation of

expression FIRST X WITHIN L. Instead of the constraint that there is no twin

node m of n between the LOOP-split node k and n, there is a constraint that there

is no twin node m of n between n and the LOOP-join node kj.

Evaluation of the destination expressions that contain iteration references SAME_

ITERATION or NEXT_ITERATION on a 3-iPG di�ers from the evaluation on

an Instance Type in chapter 4 only in the predicate instOf(I, P ) that is substituted

by the predicate 3iPGOf(I, P ), as well as an adapted de�nition of the function

lc(n′, LS, P ′) that returns the loop (iteration) counter of node n′ ∈ NP ′ in a 3-iPG

P ′ for the loop with the LOOP-split node with the label LS. We (re-)de�ne the

function lc(n′, LS, P ′) that is applied to a 3-iPG as follows:

lc(n′, LS, P ′) := ls′.C%10 | ls′, n′ ∈ NP ′ ∧ ls, n ∈ NP ∧ 3iPGOf(P ′, P )

∧ ls′.T ype = LS ∧ ls′.Label = LS

∧ sEqui(ls, ls′, P, P ′) ∧ sEqui(n, n′, P, P ′) ∧ inLoop(n, ls, P )
∧ @ks′(ks′ ∈ NP ′ ∧ ks′.T ype = LS ∧ ks′.Label = LS ∧ ls′ < ks′ < n′)

Transformation of Extended Time Constraints into a set of Atomic Time Con-

straints in a 3-iPG is executed with the atomization function atomize(tc, I) from

chapter 4, where the predicate instOf(I, P ) is substituted by the predicate 3iPGOf(I, P )

and the loop iteration counter function lc(n′, LS, P ′) is overridden by the function

that we de�ned in the previous paragraph.

An example of a transformation of a process with several Extended Time Con-

straints is shown in �gure 5.7.



102 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

Figure 5.7: 3-iterated Process Graph of the process graph from �gure 4.2 with a set
of ETCs

In this section, we described how we transform a process graph into a 3-iterated

Process Graph, and how we transform Extended Time Constraints into Atomic Time

Constraints in the obtained 3-iPG. In the next section, we move to the next step of

the Termination Check process: the Inference of Time Constraints.



5.2. TIME CONSTRAINTS INFERENCE 103

5.2 Time Constraints Inference

Atomic Time Constraints with type Lower Bound Constraint (LBC) require at least

δ time units to pass between the source and destination. In contrast to ATCs with

type LBC, ATCs with type Upper Bound Constraint (UBC) require at most δ time

units to pass between the source and destination. If a process contains a sequence of

activities A, B, and C and there is an ATC with type UBC and δ=5 days between A

and C, then we can infer that also between A and B, or between B and C no more

than 5 days are allowed to pass. To be precise, no more than 5 days minus duration

of C are allowed to pass between A and B, and no more than 5 days minus duration

of B are allowed to pass between B and C.

We use this property for the Termination Check where we analyze if a process with

unbounded loops must terminate in order to satisfy all Extended Time Constraints

with the type UBC. In other words, we investigate if unbounded loops in a process

can be bounded with Extended Time Constraints. In order to do that, we �rst infer

all possible (inferred) ATCs from ATCs with type UBC that we derived from the

given ETCs. In inferred ATCs, we leave δ unchanged, since it is irrelevant for the

investigation if ETCs with type UBC can bind unbounded loops. In general, we

infer new ATCs by moving the source/destination node of an inferred ATC in two

directions:

Source from the left to the right We infer an ATC between the source node y

and the destination node z from an (inferred) ATC between the source node x

and destination node z, such that y is a direct successor of x.

Destination from the right to the left We infer an ATC between the source

node x and the destination node y from an (inferred) ATC between the source

node x and destination node z, such that y is a direct predecessor of z.



104 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

Depending on the structure of a 3-iPG, it is not always possible to infer new inferred

ATCs until the source node of an inferred ATC is the same node as the destination

node. The function atcClosure(atc, I) de�nes a set of inferred ATCs that can be

inferred from the given ATC atc in respect to all possible structure cases of a given

3-iPG I.

In case that in an ATC the destination node is a predecessor of the source node,

the source is handled as a destination and the destination as a source, since an ATC

simply represents a temporal interval (without any direction) between two nodes. In

function atcClosure(atc, I), this is handled by CASE 0a.

We de�ne the closure of a given ATC atc for a given 3-iPG I as follows:

atcClosure(atc, I) := {(atc.ID, atc.type, atc.δ, s, d) | atc ∈ ATCI ∧ s, d ∈ NI

∧ atc.type = UBC ∧ s 6= d ∧ (

(path(d, s, I) ∧
B CASE 0a: the given ATC atc (with destination < source)

B is an element of its closure

(s = atc.destination ∧ d = atc.source)

)

∨
(path(s, d, I) ∧ (

B CASE 0b: the given ATC atc (with source < destination)

B is an element of its closure

(s = atc.source ∧ d = atc.destination)

∨
B CASE 1: sequence and AND-block - source to the right

(s.Type 6= XJ ∧ s.Type 6= LS

∧ ∃ iatc, x(iatc ∈ atcClosure(atc, I) ∧ x ∈ NI

∧ iatc.source = x ∧ iatc.destination = d ∧ dpred(x, s)))
∨
...



5.2. TIME CONSTRAINTS INFERENCE 105

...

B CASE 2: sequence and AND-block - destination to the left

(d.Type 6= XS ∧ d.Type 6= LS

∧ ∃ iatc, x(iatc ∈ atcClosure(atc, I) ∧ x ∈ NI

∧ iatc.source = s ∧ iatc.destination = x ∧ dpred(d, x)))
∨
B CASE 3: XOR-block - source to the right

(s.Type = XJ

∧ ∃ iatc1, iatc2, x, y(iatc1, iatc2 ∈ atcClosure(atc, I) ∧ x, y ∈ NI ∧ x 6= y

∧ iatc1.source = x ∧ iatc1.destination = d ∧ dpred(x, s)
∧ iatc2.source = y ∧ iatc2.destination = d ∧ dpred(y, s)))

∨
B CASE 4: XOR-block - destination to the left

(s.Type = XS

∧ ∃ iatc1, iatc2, x, y(iatc1, iatc2 ∈ atcClosure(atc, I) ∧ x, y ∈ NI ∧ x 6= y

∧ iatc1.source = s ∧ iatc1.destination = x ∧ dpred(d, x)
∧ iatc2.source = s ∧ iatc2.destination = y ∧ dpred(d, y)))

∨
B CASE 5: LOOP-block (counter < 4) - source to the right

(s.Type = LS ∧ s.C%10 6= 4

∧ ∃ iatc, x(iatc ∈ atcClosure(atc, I) ∧ x ∈ NI

∧ iatc.source = x ∧ iatc.destination = d ∧ dpred(x, s)))
∨
B CASE 6: LOOP-block (counter > 1) - destination to the left

(d.Type = LS ∧ d.C%10 6= 1

∧ ∃ iatc, x(iatc ∈ atcClosure(atc, I) ∧ x ∈ NI

∧ iatc.source = s ∧ iatc.destination = x ∧ dpred(d, x)))
∨
...



106 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

...

B CASE 7: LOOP-block (counter = 4) - source to the right

(s.Type = LS ∧ s.C%10 = 4

∧ ∃ iatc1, iatc2, x, y(iatc1, iatc2 ∈ atcClosure(atc, I) ∧ x, y ∈ NI

∧ x 6= y ∧ y.Type = LS ∧ y.C = s.C − 3 ∧ dpred(x, s)
∧ iatc1.source = x ∧ iatc1.destination = d

∧ iatc2.source = y ∧ iatc2.destination = d))

∨
B CASE 8: LOOP-block (counter = 1) - destination to the left

(d.Type = LS ∧ d.C%10 = 1

∧ ∃ iatc1, iatc2, x, y(iatc1, iatc2 ∈ atcClosure(atc, I) ∧ x, y ∈ NI

∧ x 6= y ∧ y.Type = LS ∧ y.C = s.C + 3 ∧ dpred(d, x)
∧ iatc1.source = s ∧ iatc1.destination = x

∧ iatc2.source = s ∧ iatc2.destination = y))

)}

Now let us take a look at the di�erences in inference of ATCs depending on various

structures of a given 3-iPG on minimal examples.



5.2. TIME CONSTRAINTS INFERENCE 107

Inference of ATCs in a sequence

In a sequence, new ATCs can be inferred from a given ATC, or an inferred ATC, by

moving the source node to the right and the destination node to the left until the

source node is a direct predecessor of the destination node.

Figure 5.8 shows a sequence of 4 activities and a given ATC between activity A

and activity D. In sub�gure 5.8a, there are two inferred ATCs (ATC between B and

D and ATC between C and D), which we infer by moving the source from node A

to the right to node B and node C.

Sub�gure 5.8b shows how we infer ATCs by moving the destination from node D

to the left. There are two inferred ATCs (ATC between A and C and ATC between

A and B) that we infer from the given ATC between A and D.

(a) Source to the right (b) Destination to the left

Figure 5.8: Inference of ATCs in a sequence

If we repeatedly infer new ATCs in both directions from other inferred ATCs,

we obtain an ATC closure. The ATC closure for the given ATC between the source

node A and destination node D is represented in �gure 5.9. The ATC closure of

the ATC between A and D contains (inferred) ATCs between following source and

destination nodes: A-D, A-C, A-B, B-D, C-D, and B-C.

Figure 5.9: ATC closure



108 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

Inference of ATCs in an AND-block

In an AND-block, new ATCs are inferred the same way as in a sequence.

Figure 5.10 shows how ATCs are inferred from a given ATC between the source node

A and destination node D. The source and destination node are both outside the

AND-block.

In �gure 5.11a, the source of the given ATC between B and D is placed in the

AND-block, and in �gure 5.11b, the source of the given ATC between A and B

is placed in the AND-block. In all cases, ATCs can be inferred as they are in a

sequence, since both branches are executed in parallel in an AND-block.

(a) Source to the right (b) Destination to the left

Figure 5.10: Inference of ATCs in an AND-block (1)

(a) Source to the right (b) Destination to the left

Figure 5.11: Inference of ATCs in an AND-block (2)

Inference of ATCs in an XOR-block

In contrast to an AND-block, in an XOR-block only one of two branches gets ex-

ecuted, and at design time we do not know which one it will be. Because of this

behavior of an XOR-block, we have to adapt the inference rules to handle the un-

certainty properly.



5.2. TIME CONSTRAINTS INFERENCE 109

If the source node of a given ATC is placed before the XOR-block, and the

destination node after the XOR-block, new ATCs can be inferred like they are in a

sequence or an AND-block. This can be done because the ATC, which spans over

the whole XOR-block, constrains the allowed execution time in the whole XOR-block

and not only one branch. Figure 5.12 shows the inference of ATCs in such case.

(a) Source to the right (b) Destination to the left

Figure 5.12: Inference of ATCs in an XOR-block (1)

However, if the source node of a given ATC is placed in an XOR-block and

the destination node somewhere after the XOR-block, we can only move the source

to the right until we reach the XOR-join node, as illustrated in �gure 5.13a. We

cannot move the source to the XOR-join node and further to the right because of

the existing uncertainty. The other branch in the XOR-block that does not involve

any ATC could be triggered at runtime. However, if there are two source nodes of

two di�erent ATCs in an XOR-block - each in a di�erent XOR-branch - then the

source node(s) can be moved to the XOR-join node and further, since both branches

are constrained with an ATC. This second scenario is illustrated in 5.14a.

The other way around, if the destination node of a given ATC is placed in an

XOR-block and the source node somewhere before the XOR-block, we can only move

the destination to the left until we reach the XOR-split node as illustrated in �gure

5.13b. We cannot move the destination to the XOR-split node and further to the

left because of the existing uncertainty. The other branch in the XOR-block that

does not involve any ATC could be triggered at runtime. However, if there are

two destination nodes of two di�erent ATCs in an XOR-block - each in a di�erent

XOR-branch - then the destination node(s) can be moved to the XOR-split node and

further, since both branches are constrained with an ATC. This second scenario is

illustrated in 5.14b.



110 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

(a) Source to the right (b) Destination to the left

Figure 5.13: Inference of ATCs in an XOR-block (2)

(a) Source to the right (b) Destination to the left

Figure 5.14: Inference of ATCs in an XOR-block (3)

Inference of ATCs in a LOOP-block

A LOOP-block and an XOR-block have in common that their execution is not certain

at design time. Therefore, the ATC inference rules in both structures have some

similarities.

If the source node of a given ATC is placed before the LOOP-block, and the

destination node after the LOOP-block, new ATCs can be inferred like they are in a

sequence. This can be done because the ATC, which spans over the whole LOOP-

block, constrains the allowed execution time of the entire LOOP-block (and thus

limits the number of loop iterations). Figure 5.15 shows the inference of ATCs in

such a case.

However, if the source node of a given ATC is placed in a LOOP-block and the

destination node somewhere after the LOOP-block, we can only move the source to

the right until we reach the LOOP-split node with a counter that ends with a digit

4 as illustrated in �gure 5.16a. We cannot move the source to that LOOP-split node

and further to the right because of the existing uncertainty. The loop could not be

entered at all at runtime and thus there would be no ATC in the resulting Instance

Type.



5.2. TIME CONSTRAINTS INFERENCE 111

(a) Source to the right

(b) Destination to the left

Figure 5.15: Inference of ATCs in a LOOP-block (1)



112 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

The other way around, if the destination node of a given ATC is placed in a

LOOP-block and the source node somewhere before the LOOP-block, we can only

move the destination to the left until we reach the direct successor of the LOOP-

split node with a counter that ends with a digit 1 as illustrated in �gure 5.16b. We

cannot move the source to that LOOP-split node and further to the left because of

the existing uncertainty. The loop could not be entered at all at runtime and thus

there would be no ATC in the resulting Instance Type.

In this section, we speci�ed the rules for ATC inference and de�ned the ATC

closure. We de�ned the function atcClosure(atc, I), which returns a set of all inferred

ATCs that can be inferred from a given ATC atc in a given 3-iPG I.

Based on the ATC closure, we specify the predicate terminationCheck(I) in

the next section. This predicate checks if a given process must terminate in order

to satisfy all Extended Time Constraints. We additionally illustrate, with several

examples, how the introduced mechanism works as well as how and why it is able to

check if a process must terminate in order to satisfy all Extended Time Constraints.



5.2. TIME CONSTRAINTS INFERENCE 113

(a) Source to the right

(b) Destination to the left

Figure 5.16: Inference of ATCs in a LOOP-block (2)



114 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

5.3 Termination Check

In section 5.1, we introduced the 3-iterated Process Graph (3-iPG). The idea behind

the 3-iPG is that each loop has (at most) one �rst iteration, (at most) one last iter-

ation, and an arbitrary number of iterations between the �rst and the last iteration.

The second iteration of a loop in a 3-iPG symbolizes all iterations between the �rst

and the last iteration.

If the execution time of loops in a process is limited with Extended Time Con-

straints (ETCs), then only a limited number of iterations can be "pumped" between

the �rst and the last iterations of the loops. This means that the second iteration of

the loops in a 3-iPG is limited.

If there are loops in a process that are not limited with ETCs, then the number

of iterations that can be "pumped" between the �rst and the last iterations of those

loops is not limited. In this case, the second iteration of those loops in a 3-iPG

is not limited. This means that the whole process is (structurally and temporally)

unlimited.

We use this characteristic in the termination check. If each loop in a process P

is temporally bounded by an ETC (or a set of ETCs), then the whole process is

bounded and must terminate in order to satisfy all ETCs. To check this termination

property, we check if there is an inferred ATC between the LOOP-split node and the

LOOP-join node of the second iteration of each loop in the 3-iPG I of the process P .

If this is the case, then only a limited number of iterations can be "pumped" in each

loop in P and therefore the whole process is limited and must terminate in order to

satisfy all ETCs.

We check the termination property of a process P on its corresponding 3-iPG I

with the predicate terminationCheck(I) that we de�ne as follows:

terminationCheck(I) := ∀s ∃j, atc, iatc | s, j ∈ NI

∧ atc ∈ ATCI ∧ iatc ∈ atcClosure(atc, I)
∧ s 6= j ∧ s.Type = LS ∧ j.Type = LJ ∧ s.C = j.C ∧ s.C%10 = 2

∧ iatc.source = s ∧ iatc.destination = j



5.3. TERMINATION CHECK 115

A proof of correctness and completeness of the Termination Check turns out to

be very challenging. In order to demonstrate the plausibility of the termination

check, we investigate several process examples on the following pages. The examples

represent all relevant process structures and nestings in combination with di�erent

Extended Time Constraints. For each example, we describe how the Termination

Check works and discuss its result. Furthermore, we describe in terms of Instance

Types, why a process must terminate in order to be in compliance with all ETCs, or

why it does not have to and can still be in compliance with all ETCs.

In following �gures we present several termination check examples. Each �gure

shows two processes: 1) a given process with ETCs that has to be termination-

checked, and 2) its transformation in a 3-iPG with inferred ATCs. In the resulting

3-iPGs, red ATCs represent transformed ETC(s), black ATCs represent inferred

ATCs, and the green ATCs represent inferred ATCs that are required for a positive

termination check. Green ATCs that are marked with a cross are required for a

positive termination check but cannot be inferred from ATCs in the resulting 3-iPGs

(are not in ATC closure). In some examples, the ATC closure(s) contain so many

ATCs that the example �gure contains only a subset of the ATC closure. An overview

of all following examples is given in table 5.1



116 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

E
x
a
m
p
le
N
o
.

E
T
C

E
T
C
P
a
tt
e
r
n
D
e
sc
r
ip
ti
o
n

T
e
r
m
in
a
ti
o
n
C
h
e
c
k

1
(T
C
1
5
8
,
U
B
C
,
9
0
,
A
,
C
)

E
T
C
ov
er

lo
o
p

p
o
si
ti
v
e

2
(T
C
1
5
4
,
U
B
C
,
9
0
,
F
IR
S
T
B
,
C
)

E
T
C
fr
o
m

lo
o
p

p
o
si
ti
v
e

3
(T
C
1
5
9
,
U
B
C
,
9
0
,
A
,
L
A
S
T
B
)

E
T
C
in
to

lo
o
p

p
o
si
ti
v
e

4
(T
C
1
6
0
,
U
B
C
,
9
0
,
A
,
F
IR
S
T
B
)

E
T
C
in
to

lo
o
p

n
eg
a
ti
v
e

5
(T
C
1
6
1
,
U
B
C
,
9
0
,
L
A
S
T
B
,
C
)

E
T
C
fr
o
m

lo
o
p

n
eg
a
ti
v
e

6
(T
C
1
6
2
,
U
B
C
,
9
0
,
F
IR
S
T
B
,
L
A
S
T
B
)

E
T
C
in

lo
o
p

p
o
si
ti
v
e

7
(T
C
1
6
3
,
U
B
C
,
9
0
,
F
IR
S
T
B
,
D
)

E
T
C
fr
o
m

n
es
te
d
A
N
D

p
o
si
ti
v
e

8
(T
C
1
6
4
,
U
B
C
,
9
0
,
F
IR
S
T
B
,
D
)

E
T
C
fr
o
m

n
es
te
d
X
O
R

n
eg
a
ti
v
e

9
(T
C
1
6
5
,
U
B
C
,
9
0
,
A
,
F
IR
S
T
B
)

(T
C
1
6
4
,
U
B
C
,
9
0
,
F
IR
S
T
B
,
D
)

E
T
C
in
to

n
es
te
d
X
O
R

E
T
C
fr
o
m

n
es
te
d
X
O
R

n
eg
a
ti
v
e

1
0

(T
C
1
6
4
,
U
B
C
,
9
0
,
F
IR
S
T
B
,
D
)

(T
C
1
6
6
,
U
B
C
,
9
0
,
F
IR
S
T
C
,
D
)

E
T
C
fr
o
m

n
es
te
d
X
O
R

E
T
C
fr
o
m

n
es
te
d
X
O
R

p
o
si
ti
v
e

1
1

(T
C
1
6
4
,
U
B
C
,
9
0
,
F
IR
S
T
B
,
D
)

(T
C
1
6
7
,
U
B
C
,
9
0
,
L
A
S
T
C
,
D
)

E
T
C
fr
o
m

n
es
te
d
X
O
R

E
T
C
fr
o
m

n
es
te
d
X
O
R

n
eg
a
ti
v
e

1
2

(T
C
1
6
8
,
U
B
C
,
9
0
,
F
IR
S
T
C
,
D
)

E
T
C
fr
o
m

n
es
te
d
X
O
R

n
eg
a
ti
v
e

1
3

(T
C
1
6
9
,
U
B
C
,
9
0
,
A
,
F
IR
S
T
C
)

(T
C
1
6
8
,
U
B
C
,
9
0
,
F
IR
S
T
C
,
D
)

E
T
C
in
to

n
es
te
d
lo
o
p

E
T
C
fr
o
m

n
es
te
d
lo
o
p

n
eg
a
ti
v
e

1
4

(T
C
1
5
5
,
U
B
C
,
5
,
A
,
F
IR
S
T
B
)

(T
C
1
5
6
,
U
B
C
,
5
,
L
A
S
T
C
W
IT
H
IN

L
S
2
,

E
A
C
H
R
E
L
A
T
IV
E
B
W
IT
H
IN

L
S
1
N
E
X
T
_
IT
E
R
A
T
IO

N
L
S
1
)

(T
C
2
3
,
U
B
C
,
5
,
E
A
C
H
B
,
F
IR
S
T
R
E
L
A
T
IV
E
C
)

(T
C
1
2
,
U
B
C
,
5
,
L
A
S
T
C
W
IT
H
IN

L
S
2
,
H
)

(T
C
1
5
7
,
U
B
C
,
5
,
F
IR
S
T
C
W
IT
H
IN

L
S
2
,

L
A
S
T
R
E
L
A
T
IV
E
C
W
IT
H
IN

L
S
2
S
A
M
E
_
IT
E
R
A
T
IO

N
L
S
1
)

E
T
C
in
to

lo
o
p

E
T
C
fr
o
m

n
es
te
d
lo
o
p

E
T
C
in
to

n
es
te
d
lo
o
p

E
T
C
fr
o
m

n
es
te
d
lo
o
p

E
T
C
in

n
es
te
d
lo
o
p

n
eg
a
ti
v
e

Table 5.1: Termination check examples



5.3. TERMINATION CHECK 117

Example 1: (TC158, UBC, 90, A, C) - positive termination check

Figure 5.17 shows the transformation of a process with one loop and the ETC TC158

that spans over the loop. In the resulting 3-iPG, we can see a part of the ATC closure

of the resulting ATC (TC158, UBC, 90, A0, C0). The ATC between LS2 and LJ2 is

required for a positive termination check. This ATC can be inferred from the ATC

between A0 and C0, therefore the given process must terminate in order to be in

compliance with ETC TC158.

Figure 5.17: Example 1 - positive termination check

There is only a �nite number of loop iterations such that the process satis�es the

ETC TC158. Therefore, there is also a �nite number of Instance Types of the given

process that satisfy the ETC. A �nite number of Instance Types makes further steps

in Time Management (e.g. forward an backward time calculation) possible, while an

in�nite number of Instance Types does not.



118 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

Example 2: (TC154, UBC, 90, FIRST B, C) - positive termination check

The process from �gure 5.18 also has to terminate in order to satisfy the ETC TC154,

even though the ETC does not span over the loop. In the resulting 3-iPG, we can

see a part of the ATC closure of the resulting ATC (TC154, UBC, 90, B1, C0). The

ATC between LS2 and LJ2 is required for a positive termination check. This ATC

can be inferred from the ATC between B1 and C0, therefore the given process must

terminate in order to be in compliance with ETC TC154.

Figure 5.18: Example 2 - positive termination check

There is only a �nite number of loop iterations such that the process satis�es the

ETC TC154. Therefore, there is also a �nite number of Instance Types of the given

process that satisfy the ETC. This is the case because each Instance Type, in which

the loop is entered, has an occurrence of B in the �rst loop iteration. This one binds

the loop, since after that the execution time is limited.



5.3. TERMINATION CHECK 119

Example 3: (TC159, UBC, 90, A, LAST B) - positive termination check

The process from �gure 5.19 has to terminate as well in order to satisfy the ETC

TC159. In the resulting 3-iPG, we can see a part of the ATC closure of the resulting

ATC (TC159, UBC, 90, A0, B3). The ATC between LS2 and LJ2 can be inferred

from the ATC between A0 and B3, therefore the given process must terminate in

order to be in compliance with the ETC TC159.

Figure 5.19: Example 3 - positive termination check

There is only a �nite number of loop iterations such that the process satis�es

the ETC TC159. Therefore, there is also a �nite number of Instance Types of the

given process that satisfy the ETC. This is the case because each Instance Type, in

which the loop is entered, has an occurrence of B in each loop iteration. There is one

occurrence of B where the ETC is still satis�ed and in each occurrence of B after that,

the ETC is not satis�ed anymore. This particular occurrence of B determines the

last possible loop iteration and therefore binds the loop and the number of allowed

Instance Types.



120 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

Example 4: (TC160, UBC, 90, A, FIRST B) - negative termination check

Figure 5.20 shows an example of a process that satis�es the ETC TC160, even if

it does not terminate. In the resulting 3-iPG, we can see the ATC closure of the

resulting ATC (TC160, UBC, 90, A0, B1). The ATC between LS2 and LJ2 cannot

be inferred from the ATC between A0 and B1, therefore the given process does not

have to terminate in order to be in compliance with the ETC TC160.

Figure 5.20: Example 4 - negative termination check

The process satis�es the ETC TC160 even if the number of loop iterations is

in�nite. Therefore, there is also an in�nite number of Instance Types of the given

process that satisfy the ETC. This is the case because each Instance Type, in which

the loop is entered, has the �rst occurrence of B in the �rst loop iteration. This

occurrence of B must be in compliance with the ETC TC160. All further occurrences

of B are not constrained with the ETC and therefore neither is the number of loop

iterations.



5.3. TERMINATION CHECK 121

Example 5: (TC161, UBC, 90, LAST B, C) - negative termination check

Figure 5.21 shows a similar example of a process that satis�es the ETC TC161, even

if it does not terminate. In the resulting 3-iPG, we can see the ATC closure of the

resulting ATC (TC161, UBC, 90, B3, C0). The ATC between LS2 and LJ2 cannot

be inferred from the ATC between B3 and C0, therefore the given process does not

have to terminate in order to be in compliance with the ETC TC161.

Figure 5.21: Example 5 - negative termination check

The process satis�es the ETC TC161 even if the number of loop iterations is

in�nite. Therefore, there is also an in�nite number of Instance Types of the given

process that satisfy the ETC. This is the case because each Instance Type can have

an in�nite number of loop iterations with occurrences of B. The ETC TC160 will

be satis�ed in each Instance Type, since it constrains only the last occurrence of B

with the following C - no matter how many occurrences of B there are before the

last one.



122 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

Example 6: (TC162, UBC, 90, FIRST B, LAST B) - positive termination

check

Figure 5.22 shows an example of a process that can satisfy the ETC TC162 only

if it terminates. In the resulting 3-iPG, we can see a part of the ATC closure of

the resulting ATC (TC162, UBC, 90, B1, B3). The ATC between LS2 and LJ2 can

be inferred from the ATC between B1 and B3, therefore the given process must

terminate in order to be in compliance with the ETC TC162.

Figure 5.22: Example 6 - positive termination check

The process satis�es the ETC TC162 only if the number of loop iterations is

�nite. Therefore, there is also a �nite number of Instance Types of the given process

that satisfy the ETC. This is the case because each Instance Type, in which the

loop is entered, has an occurrence of B in each loop iteration. The �rst B occurs in

the �rst loop iteration. After it, there is one particular occurrence of B where the

ETC is still satis�ed and in each occurrence of B after that, the ETC is not satis�ed

anymore. This particular occurrence of B determines the last possible loop iteration

and therefore binds the loop and the number of allowed Instance Types.



5.3. TERMINATION CHECK 123

Example 7: (TC163, UBC, 90, FIRST B, D) - positive termination check

The process from �gure 5.23 has to terminate in order to satisfy the ETC TC163.

In the resulting 3-iPG, we can see a part of the ATC closure of the resulting ATC

(TC163, UBC, 90, B1, D0). The ATC between LS2 and LJ2 can be inferred from

the ATC between B1 and D0, therefore the given process must terminate in order to

be in compliance with ETC TC163.

Figure 5.23: Example 7 - positive termination check

There is only a �nite number of loop iterations such that the process satis�es the

ETC TC163. Therefore, there is also a �nite number of Instance Types of the given

process that satisfy the ETC. This is the case because each Instance Type, in which

the loop is entered, has an occurrence of B (and C) in the �rst loop iteration. This

one binds the loop, since after that the execution time is limited.



124 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

Example 8: (TC164, UBC, 90, FIRST B, D) - negative termination check

The process from �gure 5.24 does not have to terminate in order to satisfy the ETC

TC164. In the resulting 3-iPG, we can see the complete closure of the resulting ATC

(TC164, UBC, 90, B1, D0). In the closure, we can observe that all inferred ATCs

result from moving of the destination D0 to the left. The source B1 cannot be moved

to the right because there is no ATC source in the false-branch of the XOR-block

(see CASE 3 of the function atcClosure(atc, I)). The ATC between LS2 and LJ2
cannot be inferred from the ATC between B1 and D0, therefore the loop in the given

process can iterate in�nitely and the process is still in compliance with ETC TC164.

Figure 5.24: Example 8 - negative termination check



5.3. TERMINATION CHECK 125

The process satis�es the ETC TC164 even if the number of loop iterations is

in�nite. Therefore, there is also an in�nite number of Instance Types of the given

process that satisfy the ETC. This is the case because an Instance Type can have an

in�nite number of loop iterations without any occurrence of B (in each iteration, the

false-branch (C) can be executed, instead of the true-branch (B)). In this case, there

is not even a derived ATC in an Instance Type. An Instance Type can also have an

in�nite number of iterations with occurrence of C and in the ∞ + 1 iteration, the

�rst B occurs. In this case, the ETC TC164 will be satis�ed, although the number

of iterations is ∞+ 1.

Example 9: (TC165, UBC, 90, A, FIRST B) and (TC164, UBC, 90,

FIRST B, D) - negative termination check

The process from �gure 5.25 does not have to terminate in order to satisfy the ETCs

TC164 and TC165. In the resulting 3-iPG, we can see the complete closure of the

resulting ATCs (TC164, UBC, 90, B1, D0) and (TC165, UBC, 90, A0, B1). In the

closure of ATC TC164, we can observe that all inferred ATCs result from moving of

the destination D0 to the left. The source B1 cannot be moved to the right because

there is no ATC source in the false-branch of the XOR-block (see CASE 3 of the

function atcClosure(atc, I)). In the closure of ATC TC165, all inferred ATCs result

from moving of the source A0 to the right. The destination B1 cannot be moved to

the left because there is no ATC destination in the false-branch of the XOR-block

(see CASE 4 of the function atcClosure(atc, I)). The ATC between LS2 and LJ2
cannot be inferred from the ATC between B1 and D0, nor from the ATC between A0

and B1, therefore the loop in the given process can iterate in�nitely and the process

is still in compliance with both ETCs.

There is an in�nite number of Instance Types of the given process that satisfy

the ETC. This is the case because an Instance Type can have an in�nite number of

loop iterations without any occurrence of B (in each iteration, the false-branch (C)

can be executed, instead of the true-branch (B)). In this case, there are no derived

ATCs in the Instance Types, therefore no ATCs have to satis�ed at all.



126 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

Figure 5.25: Example 9 - negative termination check

Example 10: (TC164, UBC, 90, FIRST B, D) and (TC166, UBC, 90,

FIRST C, D) - positive termination check

In contrast to the previous example, the process from �gure 5.26 has to terminate

in order to satisfy the ETCs TC164 and TC166. In the resulting 3-iPG, we can

see a part of the closure of the resulting ATCs (TC164, UBC, 90, B1, D0) and

(TC166, UBC, 90, C1, D0). In contrast to the previous example, we can not ob-

tain the inferred ATCs only by moving the destination (D0) to the left, but also

by moving the source (B1 or C1) to the right. This is enabled by CASE 3 of the

function atcClosure(atc, I)). The ATC between LS2 and LJ2 can be inferred from

the ATC between B1 and D0, and the ATC between C1 and D0, therefore the loop

in the given process cannot iterate in�nitely without violating the given ETCs.



5.3. TERMINATION CHECK 127

Figure 5.26: Example 10 - positive termination check

There is only a �nite number of loop iterations such that the process satis�es the

ETCs TC164 and TC166. Therefore, there is also a �nite number of Instance Types

of the given process that satisfy both ETCs. This is the case because each Instance

Type, in which the loop is entered, has either an occurrence of B (true-branch of the

XOR-block), or an occurrence of C (false-branch of the XOR-block) in the �rst loop

iteration. Since both possible cases, FIRST B and FIRST C, are constrained with

an ETC, the �rst loop iteration (no matter which XOR-branch is executed) binds

the loop, since after that the execution time is limited by the ETCs.



128 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

Example 11: (TC164, UBC, 90, FIRST B, D) and (TC167, UBC, 90,

LAST C, D) - negative termination check

The process from �gure 5.27 does not have to terminate in order to satisfy the ETCs

TC164 and TC167. In the resulting 3-iPG, we can see the complete closure of the

resulting ATCs (TC164, UBC, 90, B1, D0) and (TC167, UBC, 90, C3, D0). In the

closure of ATC TC164, we can observe that all inferred ATCs result from moving of

the destination D0 to the left. The source B1 cannot be moved to the right because

there is no ATC source in the false-branch of the �rst XOR-block (see CASE 3 of

the function atcClosure(atc, I)). The same applies for the ATC TC167: there is no

ATC source in the true-branch of the last XOR-block (see CASE 3 of the function

atcClosure(atc, I)). The ATC between LS2 and LJ2 cannot be inferred from the

ATC between B1 and D0, nor from the ATC between C3 and D0, therefore the loop

in the given process can iterate in�nitely and the process is still in compliance with

both ETCs.

Figure 5.27: Example 11 - negative termination check



5.3. TERMINATION CHECK 129

The process satis�es both ETCs, even if the number of loop iterations is in�nite.

Therefore, there is also an in�nite number of Instance Types of the given process

that satisfy the ETCs. This is the case because an Instance Type can have an in�nite

number of loop iterations without any occurrence of B (in each iteration, the false-

branch (C) can be executed, instead of the true-branch (B)). In this case, the ETC

TC167 between the last C and D will always be satis�ed - no matter how many loop

iterations there are - and the ETC TC164 would not mirror in any ATC at all.

Example 12: (TC168, UBC, 90, FIRST C, D) - negative termination check

The process from �gure 5.28 is very similar to the process in �gure 5.24. Instead of

an XOR-block in the loop, there is an inner loop. In both processes, there is another

block in the loop that involves uncertainty. Just as the process from �gure 5.24, this

process does not have to terminate in order to satisfy the ETC TC168.

In the resulting 3-iPG, we can see a part of the closure of the resulting ATC

(TC168, UBC, 90, C11, D0). In the closure, we can observe that the source C11 can

only be moved to the right until LJ213. It cannot be moved further, because there

is no ATC with the source LS211 and a destination LJ11 or some other node after

LJ11 (see CASE 7 of the function atcClosure(atc, I)). The destination D0 can be

moved all the way to the left until LJ211 has been reached (see CASE 6 and CASE 8

of the function atcClosure(atc, I)).

Because the source can only be moved to the right until LJ213, only the ATC

between LS212 and LJ212 can be inferred from the ATC between C11 and D0. The

ATC between LS222 and LJ222, the ATC between LS232 and LJ232, and the ATC

between LS12 and LJ12 cannot be inferred. Therefore, the loop in the given process

can iterate in�nitely and the process is still in compliance with the ETC TC168.



130 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

Figure 5.28: Example 12 - negative termination check

The process satis�es the ETC TC168 even if the number of loop iterations is

in�nite. Therefore, there is also an in�nite number of Instance Types of the given

process that satisfy the ETC. This is the case because an Instance Type can have

an in�nite number of loop iterations without any occurrence of C (in each iteration

of the outer loop, the inner loop (C) can be skipped). In this case, there is not even

a derived ATC in an Instance Type. An Instance Type can also have an in�nite

number of iterations of the outer loop without any occurrence of C and in the∞+1

iteration of the outer loop, for the �rst (and last) time the inner loop with activity

C is executed. In this case, the ETC TC168 will be satis�ed, although the number

of iterations is ∞+ 1.



5.3. TERMINATION CHECK 131

Example 13: (TC169, UBC, 90, A, FIRST C) and (TC168, UBC, 90,

FIRST C, D) - negative termination check

The process from �gure 5.29 is very similar to the process in �gure 5.25. Instead of

an XOR-block in the loop, there is an inner loop. In both processes, there is another

block in the loop that involves uncertainty. Just as the process from �gure 5.25, this

process does not have to terminate in order to satisfy the ETCs TC168 and TC169.

In the resulting 3-iPG, we can see a part of the closure of the resulting ATC

(TC168, UBC, 90, C11, D0) and the complete closure of the ATC (TC169, UBC, 90,

A0, C11). In the closure of ATC TC169, we can observe that only the source A0 can

be moved to the right. The destination C11 cannot be moved to the left because

there is no (inferred) ATC between a predecessor of C11 and LS14 (see CASE 8 of

the function atcClosure(atc, I)).

In the closure of ATC TC168, we can observe that the source C11 can only be

moved to the right until LJ213. It cannot be moved further, because there is no ATC

with the source LS211 and a destination LJ11 or some other node after LJ11 (see

CASE 7 of the function atcClosure(atc, I)). The destination D0 can be moved all

the way to the left until LJ211 has been reached (see CASE 6 and CASE 8 of the

function atcClosure(atc, I)).

Because the source of ATC TC168 can only be moved to the right until LJ213,

only the ATC between LS212 and LJ212 can be inferred from the ATC between C11

and D0. The ATC between LS222 and LJ222, the ATC between LS232 and LJ232,

and the ATC between LS12 and LJ12 cannot be inferred. Therefore, the loop in

the given process can iterate in�nitely and the process is still in compliance with the

ETC TC168.

The process is in compliance with both ETCs, even if the number of loop itera-

tions is in�nite. Therefore, there is also an in�nite number of Instance Types of the

given process that are in compliance with the ETCs. This is the case because an

Instance Type can have an in�nite number of loop iterations without any occurrence

of C (in each iteration of the outer loop, the inner loop (C) can be skipped). In this

case, there are no derived ATCs in the Instance Types, therefore no ATCs have to

be satis�ed at all.



132 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

Figure 5.29: Example 13 - negative termination check

Example 14: a set of ETCs - negative termination check

In this �nal example, we check the termination property of the process from �gure

5.7. In �gure 5.30, inferred ATCs that are required for a positive termination check

are added to the �gure 5.7. Other inferred ATCs that are in closure of the resulting

ATCs in the 3-iPG are not included in the �gure 5.30 due to a better readability.

Now let us check each ETC, its resulting ATCs and the closure of the resulting ATCs.

(TC155, UBC, 5, A, FIRST B)

The ETC TC155 is transformed into the following ATC: (TC155, UBC, 5, A0, B1).

The closure of this ATC contains only one inferred ATC between LS11 and B1.

The ATC between A0 and LS11 cannot be inferred, because there is no (inferred)

ATC between A0 and LS14 in any ATC closure (see CASE 8 of atcClosure(atc, I)).

However, there are no LS- and LJ-nodes between the source A0 and the destination

B1 of the ATC TC155, so the ATC cannot bind any loop anyway.



5.3. TERMINATION CHECK 133

Figure 5.30: Example 14 - negative termination check



134 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

(TC156, UBC, 5, LAST C WITHIN LS2, EACH RELATIVE B WITHIN

LS1 NEXT_ITERATION LS1)

The ETC TC156 is transformed into the following ATCs: (TC156, UBC, 5, C13, B2),

and (TC156, UBC, 5, C23, B3). Both ATCs do not embrace any LS- and LJ-node-

pairs that are required for a positive termination check, so the ATCs cannot bind

any loop.

(TC23, UBC, 5, EACH B, FIRST RELATIVE C)

The ETC TC23 is transformed into the following ATCs: (TC23, UBC, 5, B1, C11),

(TC23, UBC, 5, B2, C21), and (TC23, UBC, 5, B3, C31). The resulting ATCs are

not placed around any LS- and LJ-node-pairs that are required for a positive termi-

nation check, so the ATCs cannot bind any loop.

(TC12, UBC, 5, LAST C WITHIN LS2, H)

The ETC TC12 is transformed into the following ATCs: (TC12, UBC, 5, C13, H0),

(TC12, UBC, 5, C23, H0), and (TC12, UBC, 5, C33, H0). In this case, the resulting

ATCs are placed around three LS- and LJ-node-pairs (LS12 - LJ12, LS222 - LJ222,

and LS232 - LJ2332) that are required for a positive termination check. However,

these required ATCs between LS- and LJ-nodes cannot be inferred from the resulting

ATCs TC12. The destination of all three ATCs can indeed be moved to the left until

direct successor of the source of the respective ATC is reached. However, the source

can only be moved to the right one time to the LJ213 (and respectively LJ223 and

LJ233), but not further because there is no (inferred) ATC with the source LS211
(and respectively LS221 and LS231) and a destination that is a successor of LS214
(and respectively LS224 and LS234) - see CASE 7 of atcClosure(atc, I).

Because the source is stuck and cannot be moved to the right often enough to

obtain the required ATCs between LS- and LJ-nodes, the ATCs TC12 do not bind

any loop.



5.3. TERMINATION CHECK 135

(TC157, UBC, 5, FIRST C WITHIN LS2, LAST RELATIVE C WITHIN

LS2 SAME_ITERATION LS1)

The ETC TC157 is transformed into the following ATCs: (TC157, UBC, 5, C11, C13),

(TC157, UBC, 5, C21, C23), and (TC157, UBC, 5, C31, C33). Also in this case, the

resulting ATCs are placed each around an LS- and LJ-node-pair (LS212 - LJ212,

LS222 - LJ222, and LS232 - LJ232) that are required for a positive termination

check. Here, the required ATCs between LS- and LJ-nodes can be inferred from

the resulting ATCs TC157. The source can be moved all the way to the right (see

CASE 1 and CASE 5 of atcClosure(atc, I)) and the destination can be moved all

the way to the left (see CASE 2 and CASE 6 of atcClosure(atc, I). Therefore, 3 of

4 required ATCs between LS- and LJ-nodes can be inferred. Thereby, the inner loop

is bounded.

Even though at �rst sight it looks like this process must terminate in order to

satisfy all those ETCs, the process can actually be in compliance with the ETCs,

even if it does not terminate. The ETC TC157 indeed binds the inner loop, however

none of the ETCs binds the outer loop (ATC between LS12 and LJ12 cannot be

inferred from any ATC). The outer loop can iterate forever, if the inner loop is

skipped in each iteration. Therefore, there is an in�nite number of Instance Types

that all satisfy the ETC TC155 and all other ETCs do not have to be satis�ed at

all, since the inner loop is skipped in all those Instance Types.

If there was one single ETC (TC169, UBC, 5, F IRST B, H) instead of the given

set of ETCs, the process would have to terminate in order to satisfy it. As soon as

the loop would be entered, activity B would be executed and so the process execution

time (and thus the number of iterations of both loops) would be limited.



136 CHAPTER 5. TERMINATION CHECK FOR CYCLIC PROCESSES

In this chapter, we introduced the Termination Check, which is a novel approach

to test if a cyclic process must terminate in order to satisfy all Extended Time

Constraints (ETCs). We constructed several examples that cover di�erent ETC

patterns as listed in table 5.1. These examples underline that, in general, a cyclic

process must terminate in order to satisfy all ETCs if each loop is bounded by at

least one ETC. Such bounding ETC could be a process deadline (translated into

an upper bound constraint (UBC) between the start and the end node), an UBC

between an activity before the loop and an activity after the loop, and a few more

that interfere with the loop itself. Temporal constraints between activities out of a

loop (that do not span over the loop) are not able to bind the loop. However, lower

bound constraints and task durations do have an impact on the number of maximal

loop iterations, in case the loop is bounded by other ETCs.

As a pre-step, Termination Check enables further time management steps, since

it can help to sort out the potentially in�nite processes. It consists of three steps:

process transformation, time constraints inference, and termination check. We de-

scribed each of these steps in this chapter and delivered several examples of processes

with di�erent structures and di�erent Extended Time Constraints.

After the Termination Check, there are still a few steps to go before existing time

management algorithms (e.g. Controllability Check by Combi et al. in [CHP13])

can be applied. E.g., a cyclic process must �rst be unfolded into an acyclic process,

where loops are transformed into nested XORs. The unfolding process itself must

consider all ETCs that bind the loops, as well as all other time constraints and task

durations in the process. At the same time, the unfolding process must cope with

the problem of which loop gets unfolded and how often. The problem seems to be

very complex and could be solved by an exploration of a search space that consists of

unfolded (acyclic) processes with di�erent numbers of loop iterations for each loop.

The solution to this problem would add the last missing puzzle piece on the way to

use existing time management algorithms on cyclic processes and is the main focus

of the future work.

In the next chapter, we deliver a proof of concept for all Termination Check

steps that we described in this chapter, as well as all necessary predicates that we

introduced in chapter 4.



Chapter 6

Prototypical Implementation

In this chapter, we deliver a proof of concept for the Termination Check that we

introduced in the previous chapter, as well as all necessary predicates and functions

that we introduced in chapter 4. For the construction of the prototype, we used

Answer Set Programming (ASP) that we brie�y describe in section 6.1. The entire

code can be found in Appendices A, B, C, D, and E. The code overview is given in

section 6.2 and the evaluation of the prototype is summed up in section 6.3.

6.1 Answer Set Programming

Answer Set Programming (ASP) is a form of declarative programming that is tailor-

made for problem solving in the �eld of Knowledge Representation and Reasoning.

In contrast to imperative programming (procedural programming, object-oriented

programming), where the path to the problem solution (control �ow) is described,

a declarative program expresses the problem itself. In ASP, the problem is formally

represented in the syntax of (�rst-order) logic programs that consist of facts (in

our case the input process) and rules (in our case the rules from chapters 4 and

5). In the solving process, the represented problem is �rst grounded (translated into

propositional logic program) by the grounder. Afterwards, the solver calculates stable

models (answer sets) from which the problem solution is extracted.[GKKS12, Lif08]

137



138 CHAPTER 6. PROTOTYPICAL IMPLEMENTATION

For the grounding and solving of our Termination Check prototype, we used

version 5 of the tool clingo[GKK+16], which integrates the grounder gringo and

solver clasp. clingo can be downloaded as a part of the Potassco[GKK+11, oP]

suite of ASP systems at potassco.org.

6.2 Prototype Overview

The prototype is subdivided into the following 5 �les: facts.dl, rulesBasic.dl,

rulesProcessTransformation.dl, rulesTCInference.dl, and rulesTermination-

Check.dl. Each �le is represented in an appendix. We brie�y describe each �le in

following paragraphs.

facts.dl

The �le facts.dl contains all facts (rules without a body) and represents the input

process that shall be checked if it terminates or not. The input process (facts) consists

of a set of nodes, a set of edges, and a set of Extended Time Constraints (ETCs).

In the facts �le in appendix, we use the last example from chapter 5 (�gure 5.30) as

the input process (facts). This particular input process does not have to terminate

in order to satisfy all given ETCs.

rulesBasic.dl

The �le rulesBasic.dl contains all basic predicates that are required for the Ter-

mination Check. Most of them are directly adapted from chapter 4, e.g. direct

predecessor dpred(X, Y ) or counterpart(LS,LJ). Some of them cannot be adapted

directly due to the restrictions in ASP, however they are semantically equivalent.

rulesProcessTransformation.dl

The �le rulesProcessTransformation.dl contains all required rules for the trans-

formation of an input process into a 3-iPG as described in section 5.1. It contains

3 sections: transformation of nodes, transformation of edges, and transformation of

time constraints.

potassco.org


6.3. PROTOTYPE EVALUATION 139

The function ξ(expr, tc, I) and the atomization function atomize(tc, I) from chapter

4 are implemented in this �le. Due to the restrictions in ASP, the functions are

combined together and translated into predicates, however, they are semantically

equivalent to those in chapter 4.

rulesTCInference.dl

The �le rulesTCInference.dl contains all time constraints inference rules as intro-

duced in section 5.2.

rulesTerminationCheck.dl

Finally, the �le rulesTerminationCheck.dl contains the termination check rules as

de�ned by the predicate terminationCheck(I) in section 5.3. It checks if there is

an inferred Atomic Time Constraint (ATC) between the LOOP-split node and its

counterpart LOOP-join node of each second loop iteration. If this is the case, the

program determines that the process must terminate in order to satisfy all ETCs

(process_terminates). Otherwise, it determines that it does not have to terminate

and can still satisfy all ETCs (process_not_terminates).

6.3 Prototype Evaluation

We tested the prototype with all examples that we introduced in chapter 5 as inputs.

The tests were performed on a computer with an Intel(R) Core(TM) i7 CPU and 16

GB RAM. The code was executed in Sublime Text 3 Editor. Each input was tested

3 times with the �-quiet option and 3 times with the �-text option. If �-text

option is set, the ground program is displayed in text format in the console and if

�-quiet option is set, the ground program is not displayed in the console, which

speeds up the execution and is useful for benchmarking.

We deliver an overview an overview of all test inputs and their median execution

times with the �-quiet option as well as with the �-text option in table 6.1. We

can observe that the execution time grows with the growing process complexity, the

number of nested loops, and the number of ETCs. However, for our examples, the

execution time never exceeded 1 second, therefore we conclude that the approach is

feasible for the majority of cyclic processes.



140 CHAPTER 6. PROTOTYPICAL IMPLEMENTATION

E
x
a
m
p
le
N
o
.

E
T
C

E
T
C
P
a
tt
e
r
n
D
e
sc
r
ip
ti
o
n

T
e
r
m
in
a
ti
o
n

C
h
e
c
k

M
e
d
ia
n

E
x
e
c
u
ti
o
n

T
im

e

(�
-
q
u
i
e
t
)

M
e
d
ia
n

E
x
e
c
u
ti
o
n

T
im

e

(�
-
t
e
x
t
)

1
(T
C
1
5
8
,
U
B
C
,
9
0
,
A
,
C
)

E
T
C
ov
er

lo
o
p

p
o
si
ti
v
e

0
.0
5
s

0
.2
s

2
(T
C
1
5
4
,
U
B
C
,
9
0
,
F
IR
S
T
B
,
C
)

E
T
C
fr
o
m

lo
o
p

p
o
si
ti
v
e

0
.0
5
s

0
.2
s

3
(T
C
1
5
9
,
U
B
C
,
9
0
,
A
,
L
A
S
T
B
)

E
T
C
in
to

lo
o
p

p
o
si
ti
v
e

0
.0
5
s

0
.2
s

4
(T
C
1
6
0
,
U
B
C
,
9
0
,
A
,
F
IR
S
T
B
)

E
T
C
in
to

lo
o
p

n
eg
a
ti
v
e

0
.0
4
s

0
.2
s

5
(T
C
1
6
1
,
U
B
C
,
9
0
,
L
A
S
T
B
,
C
)

E
T
C
fr
o
m

lo
o
p

n
eg
a
ti
v
e

0
.0
5
s

0
.2
s

6
(T
C
1
6
2
,
U
B
C
,
9
0
,
F
IR
S
T
B
,
L
A
S
T
B
)

E
T
C
in

lo
o
p

p
o
si
ti
v
e

0
.0
5
s

0
.2
s

7
(T
C
1
6
3
,
U
B
C
,
9
0
,
F
IR
S
T
B
,
D
)

E
T
C
fr
o
m

n
es
te
d
A
N
D

p
o
si
ti
v
e

0
.0
8
s

0
.2
s

8
(T
C
1
6
4
,
U
B
C
,
9
0
,
F
IR
S
T
B
,
D
)

E
T
C
fr
o
m

n
es
te
d
X
O
R

n
eg
a
ti
v
e

0
.0
7
s

0
.3
s

9
(T
C
1
6
5
,
U
B
C
,
9
0
,
A
,
F
IR
S
T
B
)

(T
C
1
6
4
,
U
B
C
,
9
0
,
F
IR
S
T
B
,
D
)

E
T
C
in
to

n
es
te
d
X
O
R

E
T
C
fr
o
m

n
es
te
d
X
O
R

n
eg
a
ti
v
e

0
.0
6
s

0
.3
s

1
0

(T
C
1
6
4
,
U
B
C
,
9
0
,
F
IR
S
T
B
,
D
)

(T
C
1
6
6
,
U
B
C
,
9
0
,
F
IR
S
T
C
,
D
)

E
T
C
fr
o
m

n
es
te
d
X
O
R

E
T
C
fr
o
m

n
es
te
d
X
O
R

p
o
si
ti
v
e

0
.0
8
s

0
.3
s

1
1

(T
C
1
6
4
,
U
B
C
,
9
0
,
F
IR
S
T
B
,
D
)

(T
C
1
6
7
,
U
B
C
,
9
0
,
L
A
S
T
C
,
D
)

E
T
C
fr
o
m

n
es
te
d
X
O
R

E
T
C
fr
o
m

n
es
te
d
X
O
R

n
eg
a
ti
v
e

0
.0
6
s

0
.2
s

1
2

(T
C
1
6
8
,
U
B
C
,
9
0
,
F
IR
S
T
C
,
D
)

E
T
C
fr
o
m

n
es
te
d
X
O
R

n
eg
a
ti
v
e

0
.2
0
s

0
.4
s

1
3

(T
C
1
6
9
,
U
B
C
,
9
0
,
A
,
F
IR
S
T
C
)

(T
C
1
6
8
,
U
B
C
,
9
0
,
F
IR
S
T
C
,
D
)

E
T
C
in
to

n
es
te
d
lo
o
p

E
T
C
fr
o
m

n
es
te
d
lo
o
p

n
eg
a
ti
v
e

0
.2
1
s

0
.3
s

1
4

(T
C
1
5
5
,
U
B
C
,
5
,
A
,
F
IR
S
T
B
)

(T
C
1
5
6
,
U
B
C
,
5
,
L
A
S
T
C
W
IT
H
IN

L
S
2
,

E
A
C
H
R
E
L
A
T
IV
E
B
W
IT
H
IN

L
S
1
N
E
X
T
_
IT
E
R
A
T
IO

N
L
S
1
)

(T
C
2
3
,
U
B
C
,
5
,
E
A
C
H
B
,
F
IR
S
T
R
E
L
A
T
IV
E
C
)

(T
C
1
2
,
U
B
C
,
5
,
L
A
S
T
C
W
IT
H
IN

L
S
2
,
H
)

(T
C
1
5
7
,
U
B
C
,
5
,
F
IR
S
T
C
W
IT
H
IN

L
S
2
,

L
A
S
T
R
E
L
A
T
IV
E
C
W
IT
H
IN

L
S
2
S
A
M
E
_
IT
E
R
A
T
IO

N
L
S
1
)

E
T
C
in
to

lo
o
p

E
T
C
fr
o
m

n
es
te
d
lo
o
p

E
T
C
in
to

n
es
te
d
lo
o
p

E
T
C
fr
o
m

n
es
te
d
lo
o
p

E
T
C
in

n
es
te
d
lo
o
p

n
eg
a
ti
v
e

0
.3
4
s

0
.5
s

Table 6.1: Prototype execution time evaluation



Chapter 7

Conclusions and Future Work

Process Time Management has been researched for decades, however, processes with

loops never gained a lot of attention. In our research, we focused entirely on processes

with loops and dealt with the following two research question:

RQ1: How can we de�ne time constraints in a cyclic process?

RQ2: How can we check the controllability of a cyclic process?

The answer to the RQ1 are Extended Time Constraints (ETCs) that we intro-

duced in chapter 4. In this part of our research, we �rst elaborated a narrowed down

set of the most reasonable cases of time constraints that have an impact on activi-

ties that are placed in a loop. We introduced Extended Time Constraints that can

represent those cases and de�ned a general syntax of an ETC and the syntax of the

expressions that we use to de�ne the set of source nodes as well as the set of desti-

nation nodes in an ETC. Furthermore, we provided the semantics of the source and

destination expressions that specify the source and destination node sets in Instance

Types. Finally the atomization function for the instantiation of ETCs into Atomic

Time Constraints (ATCs) was introduced at the end of the same chapter.

141



142 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

The RQ2 turned out to be much more complicated than we expected. Our original

approach was to unfold the loops step by step, as long as the unfolded process graph

with the given time constraints is controllable1. The unfolding would have stopped

as soon as a time constraint would have been violated. Each unfold step should

have consisted of transforming of the loop into a nested XOR-block, calculating the

�nishing times, and instantiating of ATCs from the given ETCs. The satis�ability of

instantiated ATCs and the controllability of the unfolded process graph should have

been proven continuously in each unfold step. However, the nature of some ETCs,

and the uncertainties of XOR-blocks and loops (nested loops behave similarly to

XOR-blocks) make this approach useless, since the unfolding process could have run

forever. The extension of the loop unfold step with a simultaneous XOR-unfold step

would not have changed the underlying problem. In order to make the unfolding and

time calculation work, we had to �nd out a way to check beforehand if the speci�ed

ETCs temporally bind all loops in a given process or not. We de�ned a sub-research

question RQ2a:

RQ2a: How can we check if a cyclic process must terminate in order to satisfy all

time constraints?

As we investigated the RQ2a, we came up with the idea of the Termination Check,

inspired by the pumping lemma. In the Termination Check that we introduced in

chapter 5, we transform a given process into a so-called 3-iterated Process Graph

(3-iPG), where each loop is transformed into a sequence of 3 loop iterations. We

instantiate ATCs of the given ETCs in a 3-iPG according to the atomization function

and ETC semantics from chapter 4. To check if a process must terminate in order

to satisfy all ATCs, we determine an ATC closure (that contains inferred ATCs) for

each ATC. Finally, we check if the loop split and loop join nodes of each 2. iteration

of each loop are constrained with an inferred ATC. If this is the case, the whole

process must terminate in order to satisfy all ATCs/ETCs.

1In general, in a controllable temporal process it is possible to satisfy all temporal con-
straints for any possible duration of tasks that cannot be in�uenced by the agent (contingent
links).[CP09][CP10][CGMP12]



143

With the Termination Check, we laid an important milestone for time manage-

ment in processes with loops. The Termination Check brings us one step closer to

be able to calculate the earliest and the latest �nishing times of a process with loops

and to check its controllability without running into problems of endlessness.

As a proof of concept, we implemented an ASP prototype that is able to interpret

ETCs, transform them into ATCs, and to perform the Termination Check on any

cyclic process with Extended Time Constraints. The output of this prototype can

be used to preselect the processes for further time management steps. We tested the

prototype with a set of di�erent process inputs and observed that the Termination

Check was performed within one second for all tested inputs.

Further time management steps in processes with loops are the matter of future

work. The calculation of earliest and latest �nishing times and the controllability

check need to cope with interesting challenges, e.g. generation and exploration of a

search space of unfolded acyclic processes that originate from a given cyclic process,

and speci�cation of suitable strategies for balancing the number of iterations between

the loops in a process. With our contribution, the topic got even more interesting

than it was before.





Appendix A

facts.dl

1 %============================================================================

2 %============================ process facts =================================

3 %============================================================================

4

5 %================================== nodes ===================================

6 %node(label,type,duration): represents a node with a label, type, and duration.

7 %There are the following node types: act=activity, as=AND-split, aj=AND-join,

8 %xs=XOR-split, xj=XOR-join, ls=LOOP-split, lj=LOOP-join.

9 node(a,act,10).

10 node(xs1,xs,0).

11 node(d,act,10).

12 node(as1,as,0).

13 node(e,act,10).

14 node(f,act,10).

15 node(aj1,aj,0).

16 node(g,act,10).

17 node(ls1,ls,0).

18 node(b,act,10).

19 node(ls2,ls,0).

20 node(c,act,10).

21 node(lj2,lj,0).

22 node(lj1,lj,0).

23 node(xj1,xj,0).

24 node(h,act,10).

25

26

145



146 APPENDIX A. FACTS.DL

27 %================================== edges ===================================

28 %edge(x,y,condition): represents a directed edge from node x to node y.

29 %The edges with condition null are always taken, whereas the edges with

30 %condition true are taken if the condition of the node x was evaluated true

31 %and the edges with condition false are taken if the condition of the node x

32 %was evaluated false.

33 edge(a,xs1,null).

34 edge(xs1,ls1,true).

35 edge(xs1,d,false).

36 edge(d,as1,null).

37 edge(as1,e,null).

38 edge(as1,f,null).

39 edge(e,aj1,null).

40 edge(f,aj1,null).

41 edge(aj1,g,null).

42 edge(g,xj1,null).

43 edge(ls1,b,true).

44 edge(ls1,xj1,false).

45 edge(b,ls2,null).

46 edge(ls2,c,true).

47 edge(ls2,lj1,false).

48 edge(c,lj2,null).

49 edge(lj2,ls2,null).

50 edge(lj1,ls1,null).

51 edge(xj1,h,null).

52

53

54 %======================== extended time constraints ==========================

55 %etc(id, type, delta, source, destination): represents an Extended Time Constraint.

56 %source(quantifier, node_label, loop_reference): represents a source in an ETC.

57 %destination(quantifier, relation, node_label, loop_reference, iteration_reference,

58 %loop_label): represents a destination in an ETC.

59 etc(12,ubc,5,source(last, c, ls2),destination(null,null,h,null,null,null)).

60 etc(23,ubc,5,source(each, b, null),destination(first,relative,c,null,null,null)).

61 etc(155,ubc,5,source(null, a, null),destination(first,absolute,b,null,null,null)).

62 etc(156,ubc,5,source(last, c, ls2),

63 destination(each,relative,b,ls1,next_iteration,ls1)).

64 etc(157,ubc,5,source(first, c, ls2),

65 destination(last,relative,c,ls2,same_iteration,ls1)).



Appendix B

rulesBasic.dl

1 #include "facts.dl".

2

3 %============================================================================

4 %============================ basic process rules ===========================

5 %============================================================================

6

7 %=============================== node types =================================

8 act(X) :- node(X,act,_). %type of node X is activity

9 xs(X) :- node(X,xs,_). %type of node X is XOR-split

10 xj(X) :- node(X,xj,_). %type of node X is XOR-join

11 as(X) :- node(X,as,_). %type of node X is AND-split

12 aj(X) :- node(X,aj,_). %type of node X is AND-join

13 ls(X) :- node(X,ls,_). %type of node X is LOOP-split

14 lj(X) :- node(X,lj,_). %type of node X is LOOP-join

15

16 act(node(X,act,XD)) :- node(X,act,XD). %type of node X is activity

17 xs(node(X,xs,XD)) :- node(X,xs,XD). %type of node X is XOR-split

18 xj(node(X,xj,XD)) :- node(X,xj,XD). %type of node X is XOR-join

19 as(node(X,as,XD)) :- node(X,as,XD). %type of node X is AND-split

20 aj(node(X,aj,XD)) :- node(X,aj,XD). %type of node X is AND-join

21 ls(node(X,ls,XD)) :- node(X,ls,XD). %type of node X is LOOP-split

22 lj(node(X,lj,XD)) :- node(X,lj,XD). %type of node X is LOOP-join

23

24 tact(X) :- tnode(X,act,_,_). %type of node X is activity

25 txs(X) :- tnode(X,xs,_,_). %type of node X is XOR-split

26 txj(X) :- tnode(X,xj,_,_). %type of node X is XOR-join

147



148 APPENDIX B. RULESBASIC.DL

27 tas(X) :- tnode(X,as,_,_). %type of node X is AND-split

28 taj(X) :- tnode(X,aj,_,_). %type of node X is AND-join

29 tls(X) :- tnode(X,ls,_,_). %type of node X is LOOP-split

30 tlj(X) :- tnode(X,lj,_,_). %type of node X is LOOP-join

31

32 tact(tnode(X,act,XD,XC)) :- tnode(X,act,XD,XC). %type of node X is activity

33 txs(tnode(X,xs,XD,XC)) :- tnode(X,xs,XD,XC). %type of node X is XOR-split

34 txj(tnode(X,xj,XD,XC)) :- tnode(X,xj,XD,XC). %type of node X is XOR-join

35 tas(tnode(X,as,XD,XC)) :- tnode(X,as,XD,XC). %type of node X is AND-split

36 taj(tnode(X,aj,XD,XC)) :- tnode(X,aj,XD,XC). %type of node X is AND-join

37 tls(tnode(X,ls,XD,XC)) :- tnode(X,ls,XD,XC). %type of node X is LOOP-split

38 tlj(tnode(X,lj,XD,XC)) :- tnode(X,lj,XD,XC). %type of node X is LOOP-join

39

40

41 %================================= edges ====================================

42 %loop edge

43 %ledge(X,Y): represents a loop edge if the source X is a LOOP-JOIN-node

44 %and the destination a LOOP-SPLIT-node.

45 ledge(X,Y,null) :- node(X,lj,_), node(Y,ls,_), edge(X,Y,null).

46

47

48 %======================== predecessors & successors =========================

49 %direct predecessor

50 %dpred(X,Y): X is a direct predecessor of Y if there is an edge from X to Y.

51 dpred(X,Y) :- edge(X,Y,_).

52 %=====for transformed graph=====

53 tdpred(X,Y) :- tedge(X,Y,_).

54

55 %direct successor

56 %dsucc(X,Y): X is a direct successor of Y if there is an edge from Y to X.

57 dsucc(X,Y) :- edge(Y,X,_).

58 %=====for transformed graph=====

59 tdsucc(X,Y) :- tedge(Y,X,_).

60

61 %predecessor

62 %pred(X,Y): X is a predecessor of Y if X is a direct predecessor of Y or

63 %if there is a sequence of direct predecessors leading from X to Y.

64 pred(X,Y) :- dpred(X,Y).

65 pred(X,Y) :- dpred(X,Z), pred(Z,Y).

66 %=====for transformed graph=====



149

67 tpred(X,Y) :- tdpred(X,Y).

68 tpred(X,Y) :- tdpred(X,Z), tpred(Z,Y).

69

70 %non-loop-predecessor

71 %nlpred(X,Y): X is a non-loop-predecessor of Y if it is a predecessor

72 %in the graph without loop-edges.

73 nlpred(X,Y) :- dpred(X,Y), not ledge(X,Y,null).

74 nlpred(X,Y) :- dpred(X,Z), not ledge(X,Z,null), nlpred(Z,Y).

75

76 %successor

77 %succ(X,Y): X is a successor of Y if X is a direct successor of Y or if

78 %there is a sequence of direct successors leading from X to Y.

79 succ(X,Y) :- dsucc(X,Y).

80 succ(X,Y) :- dsucc(X,Z), succ(Z,Y).

81 %=====for transformed graph=====

82 tsucc(X,Y) :- tdsucc(X,Y).

83 tsucc(X,Y) :- tdsucc(X,Z), tsucc(Z,Y).

84

85 %non-loop-successor

86 %nlsucc(X,Y): X is a non-loop-successor of Y if it is a successor

87 %in the graph without loop-edges.

88 nlsucc(X,Y) :- dsucc(X,Y), not ledge(Y,X,null).

89 nlsucc(X,Y) :- dsucc(X,Z), not ledge(Z,X,null), nlsucc(Z,Y).

90

91

92 %==================================== path ==================================

93 %path

94 %path(X,Y): there is a path from X to Y if X is a predecessor of Y

95 %or if Y is a successor of X.

96 path(X,Y) :- pred(X,Y).

97 path(X,Y) :- succ(Y,X).

98 %=====for transformed graph=====

99 tpath(X,Y) :- tpred(X,Y).

100 tpath(X,Y) :- tsucc(Y,X).

101

102 %non-loop-path

103 %nlpath(X,Y): there is a non-loop-path from X to Y if X is a non-loop-predecessor

104 %of Y or if Y is a non-loop-successor of X.

105 nlpath(X,Y) :- nlpred(X,Y).

106 nlpath(X,Y) :- nlsucc(Y,X).



150 APPENDIX B. RULESBASIC.DL

107

108 %non-conditional path

109 %ncpath(X,Y): there is a non-conditional path from X to Y if all edges

110 %that lead from X to Y do not have a condition true or false.

111 ncpath(X,Y) :- edge(X,Y,null).

112 ncpath(X,Y) :- edge(X,Z,null), ncpath(Z,Y).

113

114

115 %============================= indegree & outdegree =========================

116 %indegree

117 %indeg(X,I): node X has an indegree I (I is the number of edges and conditional

118 %edges pointing to the node X).

119 indeg(X,I) :- node(X,_,_), #count{E: edge(E,X,_)}=I.

120 %=====for transformed graph=====

121 tindeg(X,I) :- tnode(X,_,_,_), #count{E: tedge(E,X,_)}=I.

122

123 %outdegree

124 %outdeg(X,O): node X has an outdegree O (O is the number of edges and conditional

125 %edges going out from node X).

126 outdeg(X,O) :- node(X,_,_), #count{E: edge(X,E,_)}=O.

127 %=====for transformed graph=====

128 toutdeg(X,O) :- tnode(X,_,_,_), #count{E: tedge(X,E,_)}=O.

129

130

131 %============================= start & end nodes ============================

132 %start node

133 %start(X): X is a start node if its indegree is 0

134 %(no edges point to the start node).

135 start(X) :- indeg(X,0).

136 %=====for transformed graph=====

137 tstart(X) :- tindeg(X,0).

138

139 %end node

140 %end(X): X is an end node if its outdegree is 0

141 %(no edges are going out from the end node).

142 end(X) :- outdeg(X,0).

143 %=====for transformed graph=====

144 tend(X) :- toutdeg(X,0).

145

146



151

147 %=========================== counterpart nodes ==============================

148 %counterparts:

149 %In block structured processes each split node has a corresponding join node.

150 %The corresponding split and join nodes are counterpart nodes.

151 %LS, LJ

152 counterpart(LS,LJ) :- node(LS,ls,_), node(LJ,lj,_), edge(LJ,LS,_).

153 counterpart(LJ,LS) :- node(LS,ls,_), node(LJ,lj,_), edge(LJ,LS,_).

154

155 %XS, XJ

156 counterpart(XS,XJ) :- node(XS,xs,_), node(XJ,xj,_),

157 #count{X: node(X,xs,_), succ(X,XS), pred(X,XJ)}=N,

158 #count{Y: node(Y,xj,_), succ(Y,XS), pred(Y,XJ)}=N.

159 counterpart(XJ,XS) :- node(XS,xs,_), node(XJ,xj,_),

160 #count{X: node(X,xs,_), succ(X,XS), pred(X,XJ)}=N,

161 #count{Y: node(Y,xj,_), succ(Y,XS), pred(Y,XJ)}=N.

162

163 %AS, AJ

164 counterpart(AS,AJ) :- node(AS,as,_), node(AJ,aj,_),

165 #count{X: node(X,as,_), succ(X,AS), pred(X,AJ)}=N,

166 #count{Y: node(Y,aj,_), succ(Y,AS), pred(Y,AJ)}=N.

167 counterpart(AJ,AS) :- node(AS,as,_), node(AJ,aj,_),

168 #count{X: node(X,as,_), succ(X,AS), pred(X,AJ)}=N,

169 #count{Y: node(Y,aj,_), succ(Y,AS), pred(Y,AJ)}=N.

170

171 %=========== counterpart tnodes in a transformed process graph ==============

172 tcounterpart(tnode(SL,ST,SD,SC),tnode(JL,JT,JD,JC)) :-

173 tnode(SL,ST,SD,SC), tnode(JL,JT,JD,JC),

174 node(SL,ST,SD), node(JL,JT,JD), counterpart(SL,JL),

175 SC=JC.

176

177

178 %=========================== nodes in a loop ================================

179 %inloop(X,LS): X is placed within a loop that starts with the node LS.

180 inloop(X,LS) :- node(X,_,_), node(LS,ls,_), node(LJ,lj,_),

181 nlpath(LS,X), path(X,LJ), counterpart(LS,LJ), X!=LS,

182 not counterpart(X,LS), not split_false_ncpath(LS,X).

183

184 %insomeloop(X): X is placed within at least one loop.

185 insomeloop(X) :- node(X,_,_), node(LS,ls,_), inloop(X,LS).

186



152 APPENDIX B. RULESBASIC.DL

187 %split_false_ncpath(LS,X): There is a path between LS and X that starts with

188 %a false-edge, followed by non-conditional edges.

189 split_false_ncpath(LS,X) :- node(LS,ls,_), node(X,_,_), edge(LS,X,false).

190

191 split_false_ncpath(LS,X) :- node(LS,ls,_), node(X,_,_), node(Z,_,_),

192 edge(LS,Z,false), ncpath(Z,X).



Appendix C

rulesProcessTransformation.dl

1 #include "rulesBasic.dl".

2

3 %============================================================================

4 %==================== process transformation rules ==========================

5 %============================================================================

6

7 %===================== transformed nodes - tnodes ===========================

8

9 %tnode(label,type,duration,counter): represents a transformed node

10 %with a label, type, duration, and counter.

11

12 %Rule 1 - non-loop nodes:

13 %For each node node(L,T,D) in P that does not appear in a loop, and is not

14 %a LOOP-split or a LOOP-join node, there is a derived node tnode(L,T,D,C)

15 %in 3-iPG with the counter C = 0.

16 tnode(L,T,D,C) :- node(L,T,D), not ls(L), not lj(L),

17 node(LS,ls,_), not insomeloop(L), C=0.

18

19 %Rule 2 - LOOP-split nodes:

20 %For each node tnode(P,PT,PD,PC) in 3-iPG that is equivalent to node(P,PT,PD)

21 %in P that is a direct predecessor of a LOOP-split node node(LS,ls,LSD) in P,

22 %and not a LOOP-join node, there are 4 derived nodes tnode(L,ls,D,C)

23 %with the counter C=PC*10+X, where X is an integer between 1 and 4.

24 tnode(L,ls,D,C) :- node(L,ls,D),

25 node(P,PT,PD), dpred(P,L), not lj(P),

26 tnode(P,PT,PD,PC), C=TMP+X, TMP=PC*10, X=1..4.

153



154 APPENDIX C. RULESPROCESSTRANSFORMATION.DL

27

28 %Rule 3 - LOOP-join nodes:

29 %For each LOOP-split node tnode(LS,ls,LSD,C) in 3-iPG with a counter C with

30 %a remainder 1, 2, or 3 of the division by 10, there is a counterpart

31 %LOOP-join node tnode(L,lj,D,C) in 3-iPG with the same counter.

32 tnode(L,lj,D,C) :- node(L,lj,D),

33 node(LS,ls,LSD), counterpart(L,LS),

34 tnode(LS,ls,LSD,C), C\10=X, X=1..3.

35

36 %Rule 4 - nodes within a loop (except LOOP-split nodes, LOOP-join nodes,

37 %and direct successors of LOOP-split nodes):

38 %For each node tnode(P,PT,PD,C) in 3-iPG that is equivalent to node(P,PT,PD)

39 %in P, which is a direct predecessor of a node node(L,T,D) in P, there is a node

40 %tnode(L,T,D,C) in 3-iPG with the same counter as tnode(P,PT,PD,C)

41 %with a remainder 1, 2, or 3 of the division by 10.

42 %Node node(L,T,D) is placed in a loop node(LS,ls,_) and is neither a LOOP-split

43 %node nor a LOOP-join node. Neither is node(P,PT,PD) a LOOP-split node.

44 tnode(L,T,D,C) :- node(L,T,D), not ls(L), not lj(L),

45 node(LS,ls,_), inloop(L,LS),

46 node(P,PT,PD), not ls(P), edge(P,L,_),

47 tnode(P,PT,PD,C), C\10=X, X=1..3.

48

49 %Rule 5 - true-direct-successors of a LOOP-split node (except LOOP-split

50 %and LOOP-join nodes):

51 %For each node tnode(P,PT,PD,C) in 3-iPG that is equivalent to node(P,PT,PD)

52 %in P, which is a direct predecessor of a node node(L,T,D) in P, there is a node

53 %tnode(L,T,D,C) in 3-iPG with the same counter as tnode(P,PT,PD,C) with a

54 %remainder 1, 2, or 3 of the division by 10. Node node(L,T,D) is not a LOOP-split

55 %node and not a LOOP-join node, and node(P,PT,PD) is a LOOP-split node.

56 %Node node(L,T,D) is a true-direct-successor of node(P,PT,PD).

57 tnode(L,T,D,C) :- node(L,T,D), not ls(L), not lj(L),

58 node(LS,ls,_), inloop(L,LS),

59 node(P,PT,PD), ls(P), edge(P,L,true),

60 tnode(P,PT,PD,C), C\10=X, X=1..3.

61

62 %Rule 6 - false-direct-successors of a LOOP-split node within a loop

63 %(except LOOP-split and LOOP-join nodes):

64 %For each node tnode(PP,PPT,PPD,C) in 3-iPG that is equivalent to

65 %node(PP,PPT,PPD) in P, there is a node tnode(L,T,D,C) in 3-iPG with

66 %the same counter as tnode(PP,PPT,PPD,C). Node node(L,T,D) is neither



155

67 %a LOOP-split node nor a LOOP-join node. Node node(L,T,D) is placed

68 %in a loop, and is a false-direct-successor of node(P,ls,_).

69 %Node node(P,ls,_) is a LOOP-split node and node(PP,PPT,PPD) is

70 %not a LOOP-join node. Node node(P,ls,_) is a direct successor of

71 %node(PP,PPT,PPD).

72 tnode(L,T,D,C) :- node(L,T,D), not ls(L), not lj(L),

73 node(LS,ls,_), inloop(L,LS),

74 node(P,ls,_), edge(P,L,false),

75 node(PP,PPT,PPD), not lj(PP), edge(PP,P,_),

76 tnode(PP,PPT,PPD,C).

77

78

79

80 %===================== transformed edges - tedges ===========================

81

82 %tedge(start,end,condition): there is a directed edge from the node start

83 %to the node end with a truth value condition (true or false).

84

85 %Rule 7 - edges between nodes with the same counter:

86 %For all nodes tnode(S,ST,SD,SC) and tnode(E,ET,ED,EC) in 3-iPG

87 %that are derived from node(S,ST,SD) and node(E,ET,ED) in P and have the same

88 %counter SC=EC, there is an edge tedge(tnode(S,ST,SD,SC),tnode(E,ET,ED,EC),C)

89 %in 3-iPG between them if tnode(S,ST,SD,SC) is not a LOOP-join node,

90 %and tnode(E,ET,ED,EC) is not a LOOP-split node, and if there is an edge between

91 %node(S,ST,SD) and node(E,ET,ED) in P.

92 tedge(tnode(S,ST,SD,SC),tnode(E,ET,ED,EC),C) :-

93 tnode(S,ST,SD,SC), tnode(E,ET,ED,EC),

94 SC=EC, edge(S,E,C), not ledge(S,E,C).

95

96 %Rule 8 - edges between LOOP-join and LOOP-split nodes:

97 %For all LOOP-join nodes tnode(S,lj,SD,SC) and LOOP-split nodes tnode(E,ls,ED,EC)

98 %in 3-iPG that are derived from node(S,lj,SD) and node(E,ls,ED) in P, there is

99 %an edge tedge(tnode(S,lj,SD,SC),tnode(E,ls,ED,EC),C) in 3-iPG between them if

100 %there is an edge between node(S,lj,SD) and node(E,ls,ED) in P and the counter of

101 %tnode(E,ls,ED,EC) is the counter of tnode(S,lj,SD,SC) increased by 1.

102 tedge(tnode(S,lj,SD,SC),tnode(E,ls,ED,EC),C) :-

103 tnode(S,lj,SD,SC), tnode(E,ls,ED,EC),

104 EC=SC+1, edge(S,E,C), ledge(S,E,C).

105

106



156 APPENDIX C. RULESPROCESSTRANSFORMATION.DL

107 %Rule 9 - edges between LOOP-split predecessors and LOOP-split nodes:

108 %For all LOOP-split predecessor nodes tnode(S,ST,SD,SC) and LOOP-split nodes

109 %tnode(E,ls,ED,EC) in 3-iPG that are derived from node(S,ST,SD) and

110 %node(E,ls,_) in P, there is an edge tedge(tnode(S,ST,SD,SC),tnode(E,ls,ED,EC),C)

111 %in 3-iPG between them if there is an edge between node(S,ST,SD) and node(E,ls,_)

112 %in P and the counter of tnode(E,ls,ED,EC) is the counter of tnode(S,ST,SD,SC)

113 %multiplied by 10 and increased by 1.

114 tedge(tnode(S,ST,SD,SC),tnode(E,ls,ED,EC),C) :-

115 tnode(S,ST,SD,SC), tnode(E,ls,ED,EC),

116 EC=TMP+1, TMP=SC*10, node(E,ls,_), edge(S,E,C).

117

118 %Rule 10 - edges between LOOP-split and false-direct-successor:

119 %For all LOOP-split nodes tnode(S,ls,SD,SC) and nodes tnode(E,ET,ED,EC) in 3-iPG

120 %that are derived from node(S,ls,_) and node(E,ET,ED) in P, there is an edge

121 %tedge(tnode(S,ls,SD,SC),tnode(E,ET,ED,EC),null) in 3-iPG between them if there

122 %is a false-edge between node(S,ls,_) and node(E,ET,ED) in P and the counter of

123 %tnode(S,ls,SD,SC) returns a remainder 4 for the division by 10, and the counter

124 %of tnode(E,ET,ED,EC) is the counter of tnode(S,ls,SD,SC) divided by 10

125 %(remember that the node counter is an integer).

126 tedge(tnode(S,ls,SD,SC),tnode(E,ET,ED,EC),null) :-

127 tnode(S,ls,SD,SC), tnode(E,ET,ED,EC),

128 SC\10=4, EC=SC/10, node(S,ls,_), edge(S,E,false).

129

130

131

132 %====================== transformed time constraints ========================

133

134 %========================== atomizatioin function ===========================

135

136 %Extended Time Constraint

137 %etc(id, type, delta, source, destination):

138 %source: source(quantifier, node_label, loop_reference_label)

139 %destination: destination(quantifier, relation, node_label, loop_reference_label,

140 %iteration_reference, iteration_reference_loop_label)

141 %

142 % atomized into

143 %

144 %Atomic Time Constraint

145 %atc_<absolute|relative>(id,type,delta,source_node,destination_node)

146



157

147 %An atc is an Atomic Time Constraint (ATC) of an etc if the atc source node

148 %tnode(SL,ST,SD,SC) is an element of the source node set source(SQ,SL,SLRL)

149 %of the etc and the atc destination node tnode(DL,DT,DD,DC) is an element of

150 %the destination node set destination(DQ,_,DL,DLRL,DIR) of the etc.

151

152 %ATC with destination outside all loops

153 atc_absolute(ID,T,D,tnode(SL,ST,SD,SC),tnode(DL,DT,DD,DC)) :-

154 etc(ID,T,D,source(SQ,SL,SLRL),destination(null,null,DL,null,null,null)),

155 source_node(tnode(SL,ST,SD,SC),source(SQ,SL,SLRL)), tnode(DL,DT,DD,DC),

156 not nodes_equal(tnode(SL,ST,SD,SC),tnode(DL,DT,DD,DC)).

157

158 %ATC with absolute destination

159 atc_absolute(ID,T,D,tnode(SL,ST,SD,SC),tnode(DL,DT,DD,DC)) :-

160 etc(ID,T,D,source(SQ,SL,SLRL),destination(DQ,absolute,DL,DLRL,DIR,DIRLL)),

161 source_node(tnode(SL,ST,SD,SC),source(SQ,SL,SLRL)),

162 destination_node_absolute(tnode(DL,DT,DD,DC),

163 destination(DQ,absolute,DL,DLRL,DIR,DIRLL)),

164 not nodes_equal(tnode(SL,ST,SD,SC),tnode(DL,DT,DD,DC)).

165

166 %ATC with relative destination

167 atc_relative(ID,T,D,tnode(SL,ST,SD,SC),tnode(DL,DT,DD,DC)) :-

168 etc(ID,T,D,source(SQ,SL,SLRL),destination(DQ,relative,DL,DLRL,DIR,DIRLL)),

169 source_node(tnode(SL,ST,SD,SC),source(SQ,SL,SLRL)),

170 destination_node_relative(tnode(DL,DT,DD,DC),tnode(SL,ST,SD,SC),

171 destination(DQ,relative,DL,DLRL,DIR,DIRLL)),

172 not nodes_equal(tnode(SL,ST,SD,SC),tnode(DL,DT,DD,DC)),

173 tsucc(tnode(DL,DT,DD,DC),tnode(SL,ST,SD,SC)).

174

175

176 %=============================== source nodes ===============================

177

178 %A tnode is an element of the source node set if the criteria defined below holds

179 %L

180 source_node(tnode(L,T,D,C), source(null,SL,null)) :-

181 tnode(L,T,D,C), node(SL,ST,SD), SL=L.

182

183 %FIRST L

184 source_node(tnode(L,T,D,C), source(first,SL,null)) :-

185 tnode(L,T,D,C), node(SL,ST,SD), SL=L,

186 not not_first_tnode(tnode(L,T,D,C)).



158 APPENDIX C. RULESPROCESSTRANSFORMATION.DL

187

188 %LAST L

189 source_node(tnode(L,T,D,C), source(last,SL,null)) :-

190 tnode(L,T,D,C), node(SL,ST,SD), SL=L,

191 not not_last_tnode(tnode(L,T,D,C)).

192

193 %EACH L

194 source_node(tnode(L,T,D,C), source(each,SL,null)) :-

195 tnode(L,T,D,C), node(SL,ST,SD), SL=L.

196

197 %============================================================================

198

199 %FIRST L WITHIN SLR

200 source_node(tnode(L,T,D,C), source(first,SL,SLRL)) :-

201 tnode(L,T,D,C), node(SL,ST,SD), SL=L,

202 tnode(LL,LT,LD,LC), node(SLRL,SLRT,SLRD), SLRL=LL, LC\10=1,

203 tpred(tnode(LL,LT,LD,LC),tnode(L,T,D,C)),

204 not twin_2_between(tnode(LL,LT,LD,LC),tnode(L,T,D,C)).

205

206 %LAST L WITHIN SLR

207 source_node(tnode(L,T,D,C), source(last,SL,SLRL)) :-

208 tnode(L,T,D,C), node(SL,ST,SD), SL=L,

209 tnode(LL,LT,LD,LC), node(SLRL,SLRT,SLRD), SLRL=LL, LC\10=4,

210 tpred(tnode(L,T,D,C),tnode(LL,LT,LD,LC)),

211 not twin_1_between(tnode(L,T,D,C),tnode(LL,LT,LD,LC)).

212

213 %EACH L WITHIN SLR

214 source_node(tnode(L,T,D,C), source(each,SL,SLRL)) :-

215 tnode(L,T,D,C), node(SL,ST,SD), SL=L, node(SLRL,_,_).

216

217

218

219 %============================ destination nodes =============================

220

221 %================================= ABSOLUTE =================================

222 %A tnode is an element of the destination node set if the criteria defined below holds

223 %L

224 destination_node_absolute(tnode(L,T,D,C),

225 destination(null,absolute,DL,null,null,null)) :-

226 tnode(L,T,D,C), node(DL,DT,DD), DL=L.



159

227

228 %FIRST ABSOLUTE L

229 destination_node_absolute(tnode(L,T,D,C),

230 destination(first,absolute,DL,null,null,null)) :-

231 tnode(L,T,D,C), node(DL,DT,DD), DL=L,

232 not not_first_tnode(tnode(L,T,D,C)).

233

234 %LAST ABSOLUTE L

235 destination_node_absolute(tnode(L,T,D,C),

236 destination(last,absolute,DL,null,null,null)) :-

237 tnode(L,T,D,C), node(DL,DT,DD), DL=L,

238 not not_last_tnode(tnode(L,T,D,C)).

239

240 %EACH ABSOLUTE L

241 destination_node_absolute(tnode(L,T,D,C),

242 destination(each,absolute,DL,null,null,null)) :-

243 tnode(L,T,D,C), node(DL,DT,DD), DL=L.

244

245 %============================================================================

246

247 %FIRST ABSOLUTE L WITHIN SLR

248 destination_node_absolute(tnode(L,T,D,C),

249 destination(first,absolute,DL,DLRL,null,null)) :-

250 tnode(L,T,D,C), node(DL,DT,DD), DL=L,

251 tnode(LL,LT,LD,LC), node(DLRL,DLRT,DLRD), DLRL=LL, LC\10=1,

252 tpred(tnode(LL,LT,LD,LC),tnode(L,T,D,C)),

253 not twin_2_between(tnode(LL,LT,LD,LC),tnode(L,T,D,C)).

254

255 %LAST ABSOLUTE L WITHIN SLR

256 destination_node_absolute(tnode(L,T,D,C),

257 destination(last,absolute,DL,DLRL,null,null)) :-

258 tnode(L,T,D,C), node(DL,DT,DD), DL=L,

259 tnode(LL,LT,LD,LC), node(DLRL,DLRT,DLRD), DLRL=LL, LC\10=4,

260 tpred(tnode(L,T,D,C),tnode(LL,LT,LD,LC)),

261 not twin_1_between(tnode(L,T,D,C),tnode(LL,LT,LD,LC)).

262

263 %EACH ABSOLUTE L WITHIN SLR

264 destination_node_absolute(tnode(L,T,D,C),

265 destination(each,absolute,DL,DLRL,null,null)) :-

266 tnode(L,T,D,C), node(DL,DT,DD), DL=L, node(DLRL,_,_).



160 APPENDIX C. RULESPROCESSTRANSFORMATION.DL

267

268

269 %================================= RELATIVE =================================

270 %destination_node_relative(tnode(L,T,D,C), tnode(SL,ST,SD,SC),

271 %destination(each,relative,DL,null,null,null)):

272 %tnode(L,T,D,C) is an element of destination(each,relative,DL,null,null,null)

273 %for the source node tnode(SL,ST,SD,SC).

274

275 %FIRST RELATIVE L

276 destination_node_relative(tnode(L,T,D,C), tnode(SL,ST,SD,SC),

277 destination(first,relative,DL,null,null,null)) :-

278 tnode(L,T,D,C), tnode(SL,ST,SD,SC), node(DL,DT,DD), DL=L,

279 tsucc(tnode(L,T,D,C),tnode(SL,ST,SD,SC)),

280 not twin_2_between(tnode(SL,ST,SD,SC),tnode(L,T,D,C)).

281

282 %LAST RELATIVE L

283 destination_node_relative(tnode(L,T,D,C), tnode(SL,ST,SD,SC),

284 destination(last,relative,DL,null,null,null)) :-

285 tnode(L,T,D,C), tnode(SL,ST,SD,SC), node(DL,DT,DD), DL=L,

286 tsucc(tnode(L,T,D,C),tnode(SL,ST,SD,SC)),

287 not not_last_tnode(tnode(L,T,D,C)).

288

289 %EACH RELATIVE L

290 destination_node_relative(tnode(L,T,D,C), tnode(SL,ST,SD,SC),

291 destination(each,relative,DL,null,null,null)) :-

292 tnode(L,T,D,C), tnode(SL,ST,SD,SC), node(DL,DT,DD), DL=L,

293 tsucc(tnode(L,T,D,C),tnode(SL,ST,SD,SC)).

294

295 %============================================================================

296

297 %FIRST RELATIVE L WITHIN DLR

298 destination_node_relative(tnode(L,T,D,C), tnode(SL,ST,SD,SC),

299 destination(first,relative,DL,DLRL,null,null)) :-

300 tnode(L,T,D,C), tnode(SL,ST,SD,SC),

301 node(DL,DT,DD), node(DLRL,_,_), DL=L,

302 tsucc(tnode(L,T,D,C),tnode(SL,ST,SD,SC)),

303 tnode(LL,LT,LD,LC), node(DLRL,DLRT,DLRD), DLRL=LL, LC\10=1,

304 tpred(tnode(LL,LT,LD,LC),tnode(L,T,D,C)),

305 not twin_2_between(tnode(LL,LT,LD,LC),tnode(L,T,D,C)).

306



161

307 %LAST RELATIVE L WITHIN DLR

308 destination_node_relative(tnode(L,T,D,C), tnode(SL,ST,SD,SC),

309 destination(last,relative,DL,DLRL,null,null)) :-

310 tnode(L,T,D,C), tnode(SL,ST,SD,SC),

311 node(DL,DT,DD), node(DLRL,_,_), DL=L,

312 tsucc(tnode(L,T,D,C),tnode(SL,ST,SD,SC)),

313 tnode(LL,LT,LD,LC), node(DLRL,DLRT,DLRD), DLRL=LL, LC\10=4,

314 tsucc(tnode(LL,LT,LD,LC),tnode(L,T,D,C)),

315 not twin_1_between(tnode(L,T,D,C),tnode(LL,LT,LD,LC)).

316

317 %EACH RELATIVE L WITHIN DLR

318 destination_node_relative(tnode(L,T,D,C), tnode(SL,ST,SD,SC),

319 destination(each,relative,DL,DLRL,null,null)) :-

320 tnode(L,T,D,C), tnode(SL,ST,SD,SC),

321 node(DL,DT,DD), node(DLRL,_,_), DL=L,

322 tsucc(tnode(L,T,D,C),tnode(SL,ST,SD,SC)).

323

324 %============================================================================

325

326 %FIRST RELATIVE L WITHIN DLR SAME_ITERATION DKR

327 destination_node_relative(tnode(L,T,D,C), tnode(SL,ST,SD,SC),

328 destination(first,relative,DL,DLRL,same_iteration,DKRL)) :-

329 tnode(L,T,D,C), tnode(SL,ST,SD,SC),

330 node(DL,DT,DD), node(DLRL,_,_), DL=L,

331 tsucc(tnode(L,T,D,C),tnode(SL,ST,SD,SC)),

332 tnode(LL,LT,LD,LC), node(DLRL,DLRT,DLRD), DLRL=LL, LC\10=1,

333 tpred(tnode(LL,LT,LD,LC),tnode(L,T,D,C)),

334 not twin_2_between(tnode(LL,LT,LD,LC),tnode(L,T,D,C)),

335 same_iteration(tnode(L,T,D,C),tnode(SL,ST,SD,SC),DKRL).

336

337 %LAST RELATIVE L WITHIN DLR SAME_ITERATION DKR

338 destination_node_relative(tnode(L,T,D,C), tnode(SL,ST,SD,SC),

339 destination(last,relative,DL,DLRL,same_iteration,DKRL)) :-

340 tnode(L,T,D,C), tnode(SL,ST,SD,SC),

341 node(DL,DT,DD), node(DLRL,_,_), DL=L,

342 tsucc(tnode(L,T,D,C),tnode(SL,ST,SD,SC)),

343 tnode(LL,LT,LD,LC), node(DLRL,DLRT,DLRD), DLRL=LL, LC\10=4,

344 tsucc(tnode(LL,LT,LD,LC),tnode(L,T,D,C)),

345 not twin_1_between(tnode(L,T,D,C),tnode(LL,LT,LD,LC)),

346 same_iteration(tnode(L,T,D,C),tnode(SL,ST,SD,SC),DKRL).



162 APPENDIX C. RULESPROCESSTRANSFORMATION.DL

347

348 %EACH RELATIVE L WITHIN DLR SAME_ITERATION DKR

349 destination_node_relative(tnode(L,T,D,C), tnode(SL,ST,SD,SC),

350 destination(each,relative,DL,DLRL,same_iteration,DKRL)) :-

351 tnode(L,T,D,C), tnode(SL,ST,SD,SC),

352 node(DL,DT,DD), node(DLRL,_,_), DL=L,

353 tsucc(tnode(L,T,D,C),tnode(SL,ST,SD,SC)),

354 same_iteration(tnode(L,T,D,C),tnode(SL,ST,SD,SC),DKRL).

355

356 %============================================================================

357

358 %FIRST RELATIVE L WITHIN DLR NEXT_ITERATION DKR

359 destination_node_relative(tnode(L,T,D,C), tnode(SL,ST,SD,SC),

360 destination(first,relative,DL,DLRL,next_iteration,DKRL)) :-

361 tnode(L,T,D,C), tnode(SL,ST,SD,SC),

362 node(DL,DT,DD), node(DLRL,_,_), DL=L,

363 tsucc(tnode(L,T,D,C),tnode(SL,ST,SD,SC)),

364 tnode(LL,LT,LD,LC), node(DLRL,DLRT,DLRD), DLRL=LL, LC\10=1,

365 tpred(tnode(LL,LT,LD,LC),tnode(L,T,D,C)),

366 not twin_2_between(tnode(LL,LT,LD,LC),tnode(L,T,D,C)),

367 next_iteration(tnode(L,T,D,C),tnode(SL,ST,SD,SC),DKRL).

368

369 %LAST RELATIVE L WITHIN DLR NEXT_ITERATION DKR

370 destination_node_relative(tnode(L,T,D,C), tnode(SL,ST,SD,SC),

371 destination(last,relative,DL,DLRL,next_iteration,DKRL)) :-

372 tnode(L,T,D,C), tnode(SL,ST,SD,SC),

373 node(DL,DT,DD), node(DLRL,_,_), DL=L,

374 tsucc(tnode(L,T,D,C),tnode(SL,ST,SD,SC)),

375 tnode(LL,LT,LD,LC), node(DLRL,DLRT,DLRD), DLRL=LL, LC\10=4,

376 tsucc(tnode(LL,LT,LD,LC),tnode(L,T,D,C)),

377 not twin_1_between(tnode(L,T,D,C),tnode(LL,LT,LD,LC)),

378 next_iteration(tnode(L,T,D,C),tnode(SL,ST,SD,SC),DKRL).

379

380 %EACH RELATIVE L WITHIN DLR NEXT_ITERATION DKR

381 destination_node_relative(tnode(L,T,D,C), tnode(SL,ST,SD,SC),

382 destination(each,relative,DL,DLRL,next_iteration,DKRL)) :-

383 tnode(L,T,D,C), tnode(SL,ST,SD,SC),

384 node(DL,DT,DD), node(DLRL,_,_), DL=L,

385 tsucc(tnode(L,T,D,C),tnode(SL,ST,SD,SC)),

386 next_iteration(tnode(L,T,D,C),tnode(SL,ST,SD,SC),DKRL).



163

387 %============================= HELPER RULES =================================

388

389 %There is another node with the label L that is a predecessor of the given tnode.

390 not_first_tnode(tnode(L,T,D,C)) :-

391 tnode(L,T,D,C), tnode(L2,_,_,C2),

392 L=L2, C2<C.

393

394 %There is another node with the label L that is a successor of the given tnode.

395 not_last_tnode(tnode(L,T,D,C)) :-

396 tnode(L,T,D,C), tnode(L2,_,_,C2),

397 L=L2, C<C2.

398

399 %There is another node with the label TL2 that is a predecessor of the given

400 %tnode(L2,T2,D2,C2) and successor of tnode(L1,T1,D1,C1).

401 twin_2_between(tnode(L1,T1,D1,C1),tnode(L2,T2,D2,C2)) :-

402 tnode(L1,T1,D1,C1), tnode(L2,T2,D2,C2), tnode(TL2,TT2,TD2,TC2),

403 L2=TL2, TC2<C2,

404 tpath(tnode(L1,T1,D1,C1),tnode(TL2,TT2,TD2,TC2)),

405 tpath(tnode(TL2,TT2,TD2,TC2),tnode(L2,T2,D2,C2)).

406

407 %There is another node with the label TL1 that is a successor of the given

408 %tnode(L1,T1,D1,C1) and predecessor of tnode(L2,T2,D2,C2).

409 twin_1_between(tnode(L1,T1,D1,C1),tnode(L2,T2,D2,C2)) :-

410 tnode(L1,T1,D1,C1), tnode(L2,T2,D2,C2), tnode(TL1,TT1,TD1,TC1),

411 L1=TL1, TC1>C1,

412 tpath(tnode(L1,T1,D1,C1),tnode(TL1,TT1,TD1,TC1)),

413 tpath(tnode(TL1,TT1,TD1,TC1),tnode(L2,T2,D2,C2)).

414

415 %Node tnode(SL,ST,SD,SC) and node tnode(DL,DT,DD,DC)) are not equal.

416 nodes_equal(tnode(L1,T1,D1,C1),tnode(L2,T2,D2,C2)) :-

417 tnode(L1,T1,D1,C1), tnode(L2,T2,D2,C2),

418 L1=L2, C1=C2.

419

420 %Between split node tnode(LSL,ls,LSD,LSC) and node tnode(L,T,D,C),

421 %there is no other split node with the label LSL.

422 ls_between(tnode(LSL,ls,LSD,LSC),tnode(L,T,D,C)) :- tnode(L,T,D,C),

423 tnode(LSL,ls,LSD,LSC), tnode(KSL,ls,KSD,KSC), LSL=KSL,

424 tpred(tnode(LSL,ls,LSD,LSC),tnode(KSL,ls,KSD,KSC)),

425 tpred(tnode(KSL,ls,KSD,KSC),tnode(L,T,D,C)).

426



164 APPENDIX C. RULESPROCESSTRANSFORMATION.DL

427 %Node tnode(DL,DT,DD,DC) is placed in the same iteration of the loop

428 %IPL as node tnode(SL,ST,SD,SC) if both nodes are placed in the same

429 %loop in the given process and there is no split node with the label

430 %IPL and an arbitrary counter between the node DL and node SL.

431 same_iteration(tnode(DL,DT,DD,DC),tnode(SL,ST,SD,SC),IPL) :-

432 tnode(DL,DT,DD,DC), tnode(SL,ST,SD,SC), tnode(IL,ls,ID,IC),

433 tnode(DL,DT,DD,DC)!=tnode(SL,ST,SD,SC),

434 tnode(SL,ST,SD,SC)!=tnode(IL,ls,ID,IC),

435 tnode(DL,DT,DD,DC)!=tnode(IL,ls,ID,IC),

436 node(DPL,DPT,DPD), node(SPL,SPT,SPD), node(IPL,ls,IPD),

437 DL=DPL, SL=SPL, IL=IPL,

438 inloop(DPL,IPL), inloop(SPL,IPL),

439 tpred(tnode(IL,ls,ID,IC),tnode(DL,DT,DD,DC)),

440 tpred(tnode(IL,ls,ID,IC),tnode(SL,ST,SD,SC)),

441 not ls_between(tnode(IL,ls,ID,IC),tnode(DL,DT,DD,DC)),

442 not ls_between(tnode(IL,ls,ID,IC),tnode(SL,ST,SD,SC)).

443

444 %Node tnode(DL,DT,DD,DC) is placed in the next iteration of

445 %the loop IPL as node tnode(SL,ST,SD,SC) if both nodes are placed

446 %in the same loop in the given process and

447 %there is exactly one split node with the label IPL and an arbitrary

448 %counter between the node DL and node SL.

449 next_iteration(tnode(DL,DT,DD,DC),tnode(SL,ST,SD,SC),IPL) :-

450 tnode(DL,DT,DD,DC), tnode(SL,ST,SD,SC),

451 tnode(IL1,ls,ID1,IC1), tnode(IL2,ls,ID2,IC2),

452 tnode(DL,DT,DD,DC)!=tnode(SL,ST,SD,SC),

453 tnode(SL,ST,SD,SC)!=tnode(IL1,ls,ID1,IC1),

454 tnode(DL,DT,DD,DC)!=tnode(IL1,ls,ID1,IC1),

455 tnode(SL,ST,SD,SC)!=tnode(IL2,ls,ID2,IC2),

456 tnode(DL,DT,DD,DC)!=tnode(IL2,ls,ID2,IC2),

457 node(DPL,DPT,DPD), node(SPL,SPT,SPD), node(IPL,ls,IPD),

458 DL=DPL, SL=SPL, IL1=IPL, IL2=IPL,

459 inloop(DPL,IPL), inloop(SPL,IPL),

460 tpred(tnode(IL1,ls,ID1,IC1),tnode(DL,DT,DD,DC)),

461 tpred(tnode(IL1,ls,ID1,IC1),tnode(SL,ST,SD,SC)),

462 not ls_between(tnode(IL1,ls,ID1,IC1),tnode(SL,ST,SD,SC)),

463 ls_between(tnode(IL1,ls,ID1,IC1),tnode(DL,DT,DD,DC)),

464 not ls_between(tnode(IL1,ls,ID1,IC1),tnode(IL2,ls,ID2,IC2)),

465 not ls_between(tnode(IL2,ls,ID2,IC2),tnode(DL,DT,DD,DC)).



Appendix D

rulesTCInference.dl

1 #include "rulesProcessTransformation.dl".

2

3 %============================================================================

4 %================== time constraint inference rules =========================

5 %============================================================================

6

7 %=============================== given ATC ==================================

8

9 %CASE 0:

10 %the given ATC atc is also a derived atc

11 derived_tc(tnode(SL,ST,SD,SC),tnode(DL,DT,DD,DC)) :-

12 atc_absolute(_,_,_,tnode(SL,ST,SD,SC),tnode(DL,DT,DD,DC)).

13

14 derived_tc(tnode(SL,ST,SD,SC),tnode(DL,DT,DD,DC)) :-

15 atc_relative(_,_,_,tnode(SL,ST,SD,SC),tnode(DL,DT,DD,DC)).

16

17

18

19 %======================== S--> source to the right ==========================

20

21 %CASE 1: Sequence and AND

22 %(source to right except over XJ or LJ)

23 derived_tc(S,D) :- tedge(X,S,_), derived_tc(X,D),

24 S!=D, tpath(S,D),

25 not txj(S), not tls(S).

26

165



166 APPENDIX D. RULESTCINFERENCE.DL

27 %CASE 3: XOR

28 %(source to right over XJ only if there are derived ATCs in both XOR-branches)

29 derived_tc(S,D) :- tedge(X,S,_), derived_tc(X,D),

30 tedge(Y,S,_), derived_tc(Y,D),

31 S!=D, X!=Y, tpath(S,D),

32 txj(S).

33

34 %CASE 5: LOOP - all but last LS

35 %(source to right over a LS with counter%10!=4)

36 derived_tc(tnode(SL,ls,SD,SC),D) :-

37 tedge(X,tnode(SL,ls,SD,SC),_), derived_tc(X,D),

38 tpath(tnode(SL,ls,SD,SC),D),

39 SC\10!=4.

40

41 %CASE 7: LOOP - last LS

42 %(source to right over LS with CLS%10=4 only if there is

43 %another derived ATC from another LS1 with the counter CLS-3)

44 derived_tc(tnode(SL,ls,SD,SC),D) :-

45 tedge(X,tnode(SL,ls,SD,SC),_), SC\10=4, derived_tc(X,D),

46 tnode(YL,ls,YD,YC), YC=SC-3, derived_tc(tnode(YL,ls,YD,YC),D),

47 X!=tnode(YL,ls,YD,YC), tpath(tnode(SL,ls,SD,SC),D),

48 tls(tnode(SL,ls,SD,SC)).

49

50

51

52 %========================= <--D destination to the left =====================

53

54 %CASE 2: Sequence and AND

55 %(destination to left except over XS or LS)

56 derived_tc(S,D) :- tedge(D,X,_), derived_tc(S,X),

57 S!=D, tpath(S,D),

58 not txs(D), not tls(D).

59

60 %CASE 4: XOR

61 %(destination to left over XS only if there are derived ATCs in both XOR-branches)

62 derived_tc(S,D) :- tedge(D,X,_), derived_tc(S,X),

63 tedge(D,Y,_), derived_tc(S,Y),

64 S!=D, X!=Y, tpath(S,D),

65 txs(D).

66



167

67 %CASE 6: LOOP - all but first and last LS

68 %(destination to left over a LS with counter%10!=1)

69 derived_tc(S,tnode(DL,ls,DD,DC)) :-

70 tedge(tnode(DL,ls,DD,DC),X,_), derived_tc(S,X),

71 tpath(S,tnode(DL,ls,DD,DC)),

72 DC\10!=1.

73

74 %CASE 8: LOOP - first LS

75 %(destination to left over LS with CLS%10=1 only if there is

76 %another derived ATC from the source to another LS4 with the counter CLS+3)

77 derived_tc(S,tnode(DL,ls,DD,DC)) :-

78 tedge(tnode(DL,ls,DD,DC),X,_), DC\10=1, derived_tc(S,X),

79 tnode(YL,ls,YD,YC), YC=DC+3, derived_tc(S,tnode(YL,ls,YD,YC)),

80 X!=tnode(YL,ls,YD,YC), tpath(S,tnode(DL,ls,DD,DC)),

81 tls(tnode(DL,ls,DD,DC)).





Appendix E

rulesTerminationCheck.dl

1 #include "rulesTCInference.dl".

2

3 %============================================================================

4 %===================== process termination check ============================

5 %============================================================================

6

7 %A process terminates if it has no loops.

8 process_terminates :- #count{LS: node(LS,ls,_)}=0.

9

10 %A process with loops must terminate in order to satisfy all ETCs

11 %if each loop is time constrained (=there is a derived ATC between

12 %each LS with counter%10=2 and its counterpart).

13 process_terminates :-

14 derived_tc(tnode(LSL,ls,LSD,LSC),tnode(LJL,lj,LJD,LJC)),

15 tcounterpart(tnode(LSL,ls,LSD,LSC),tnode(LJL,lj,LJD,LJC)),

16 LSC\10=2, LJC\10=2, not process_not_terminates.

17

18 %A process does not have to terminate in order to satisfy all ETCs

19 %if there are counterpart LS- and LJ-nodes with the same counter%10=2,

20 %but there is no derived ATC between them.

21 process_not_terminates :-

22 not derived_tc(tnode(LSL,ls,LSD,LSC),tnode(LJL,lj,LJD,LJC)),

23 tcounterpart(tnode(LSL,ls,LSD,LSC),tnode(LJL,lj,LJD,LJC)),

24 LSC\10=2, LJC\10=2.

169





Bibliography

[AF08] Artin Avanes and Johann-Christoph Freytag. Adaptive work�ow

scheduling under resource allocation constraints and network dynam-

ics. Proc. VLDB Endow., 1(2):1631�1637, August 2008.

[BHPS61] Yehoshua Bar-Hillel, M. Perles, and E. Shamir. On formal

properties of simple phrase structure grammars. Zeitschrift

für Phonetik, Sprachwissenschaft und Kommunikationsforschung,

14:143�172, 1961. Reprinted in Y. Bar-Hillel. (1964). Language and

Information: Selected Essays on their Theory and Application, pages

116�150, 1964.

[Bun14] Bundeskanzleramt. Verordnung der E-Control über den Wechsel, die

Anmeldung, die Abmeldung und den Widerspruch (Wechselverord-

nung 2014, WVO 2014), 2014. BGBl. II Nr. 167/2014.

[Bus98] Christoph Bussler. Work�ow instance scheduling with project man-

agement tools. In DEXA Workshop, pages 753�758, 1998.

[BWJ00] Claudio Bettini, Xiaoyang Sean Wang, and Sushil Jajodia. Free

schedules for free agents in work�ow systems. In TIME, pages 31�38,

2000.

[BWJ02a] Claudio Bettini, Xiaoyang Sean Wang, and Sushil Jajodia. Solv-

ing multi-granularity temporal constraint networks. Arti�cial Intel-

ligence, 140(1-2):107�152, 2002.

171



172 BIBLIOGRAPHY

[BWJ02b] Claudio Bettini, Xiaoyang Sean Wang, and Sushil Jajodia. Temporal

reasoning in work�ow systems. Distributed and Parallel Databases,

11(3):269�306, 2002.

[CBS04] Jorge Cardoso, Robert P Bostrom, and Amit Sheth. Work�ow man-

agement systems and erp systems: Di�erences, commonalities, and

applications. Information Technology and Management, 5(3-4):319�

338, 2004.

[CCPP95] Fabio Casati, Stefano Ceri, Barbara Pernici, and Giuseppe Pozzi.

Conceptual modeling of work�ows. In Michael P. Papazoglou, editor,

OOER '95: Object-Oriented and Entity-Relationship Modeling, pages

341�354, 1995.

[CGJ+07] Carlo Combi, Matteo Gozzi, José M. Juárez, Barbara Oliboni, and

Giuseppe Pozzi. Conceptual modeling of temporal clinical work�ows.

In 14th International Symposium on Temporal Representation and

Reasoning (TIME 2007), 28-30 June 2007, Alicante, Spain, pages

70�81, 2007.

[CGMP12] Carlo Combi, Mauro Gambini, Sara Migliorini, and Roberto Pose-

nato. Modelling temporal, data-centric medical processes. In Pro-

ceedings of the 2Nd ACM SIGHIT International Health Informatics

Symposium, IHI '12, pages 141�150, 2012.

[CGMP14] Carlo Combi, Mauro Gambini, Sara Migliorini, and Roberto Posen-

ato. Representing business processes through a temporal data-centric

work�ow modeling language: An application to the management of

clinical pathways. Systems, Man, and Cybernetics: Systems, IEEE

Transactions on, 44(9):1182�1203, 2014.

[CGPP12] Carlo Combi, Matteo Gozzi, Roberto Posenato, and Giuseppe Pozzi.

Conceptual modeling of �exible temporal work�ows. TAAS, 7(2):19,

2012.

[CHM+14] A. Cimatti, L. Hunsberger, A. Micheli, R. Posenato, and M. Roveri.

Sound and complete algorithms for checking the dynamic controlla-



BIBLIOGRAPHY 173

bility of temporal networks with uncertainty, disjunction and obser-

vation. In Temporal Representation and Reasoning (TIME), 2014

21st International Symposium on, pages 27�36, 2014.

[CHP13] Carlo Combi, Luke Hunsberger, and Roberto Posenato. An algorithm

for checking the dynamic controllability of a conditional simple tem-

poral network with uncertainty. In ICAART 2013 - Proceedings of the

5th International Conference on Agents and Arti�cial Intelligence,

pages 144�156, 2013.

[CKGJ13] Saoussen Cheikhrouhou, Slim Kallel, Nawal Guermouche, and Mo-

hamed Jmaiel. A survey on time-aware business process model-

ing. In International Conference on Enterprise Information Systems

(ICEIS), page 10p., 2013.

[CKGJ15] Saoussen Cheikhrouhou, Slim Kallel, Nawal Guermouche, and Mo-

hamed Jmaiel. The temporal perspective in business process model-

ing: A survey and research challenges. Serv. Oriented Comput. Appl.,

9(1):75�85, 2015.

[CP02] Carlo Combi and Giuseppe Pozzi. Towards temporal information in

work�ow systems. In International Conference on Conceptual Mod-

eling, pages 13�25, 2002.

[CP03] Carlo Combi and Giuseppe Pozzi. Temporal conceptual modelling

of work�ows. In International Conference on Conceptual Modeling,

pages 59�76, 2003.

[CP06] Carlo Combi and Giuseppe Pozzi. Task scheduling for a temporal

work�ow management system. In Temporal Representation and Rea-

soning, 2006. TIME 2006. Thirteenth International Symposium on,

pages 61�68, 2006.

[CP09] Carlo Combi and Roberto Posenato. Controllability in temporal con-

ceptual work�ow schemata. In Business Process Management, 7th

International Conference, pages 64�79, 2009.



174 BIBLIOGRAPHY

[CP10] Carlo Combi and Roberto Posenato. Towards temporal controllabil-

ities for work�ow schemata. In 2010 17th International Symposium

on Temporal Representation and Reasoning, pages 129�136, 2010.

[CP18] Carlo Combi and Roberto Posenato. Extending Conditional Simple

Temporal Networks with Partially Shrinkable Uncertainty. In 25th

International Symposium on Temporal Representation and Reasoning

(TIME 2018), volume 120 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 9:1�9:16, 2018.

[DDDGB08] Gero Decker, Remco Dijkman, Marlon Dumas, and Luciano García-

Bañuelos. Transforming bpmn diagrams into yawl nets. In Interna-

tional Conference on Business Process Management, pages 386�389,

2008.

[DDO08] Remco M Dijkman, Marlon Dumas, and Chun Ouyang. Semantics

and analysis of business process models in bpmn. Information and

Software technology, 50(12):1281�1294, 2008.

[DMP91] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint net-

works. Arti�cial Intelligence, 49(1):61 � 95, 1991.

[DRMR13] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Rei-

jers. Fundamentals of Business Process Management. Springer Berlin

Heidelberg, 2013.

[EEP06] Johann Eder, Hannes Eichner, and Horst Pichler. A probabilistic ap-

proach to reduce the number of deadline violations and the tardiness

of work�ows. In On the Move to Meaningful Internet Systems 2006,

pages 5�7, 2006.

[EGP00] Johann Eder, Wolfgang Gruber, and Euthimios Panagos. Tem-

poral modeling of work�ows with conditional execution paths. In

Database and Expert Systems Applications, 11th International Con-

ference, pages 243�253, 2000.



BIBLIOGRAPHY 175

[EP00] Johann Eder and Euthimios Panagos. Managing time in work�ow

systems. In Work�ow Handbook 2001, pages 109�132. October 2000.

[EPGN03] Johann Eder, Horst Pichler, Wolfgang Gruber, and Michael Ninaus.

Personal schedules for work�ow systems. In International Conference

on Business Process Management (BPM 2003), pages 216�231, 2003.

[EPL97] Johann Eder, Heinz Pozewaunig, and Walter Liebhart. epert: Ex-

tending pert for work�ow management systems. 1997.

[EPPR99] Johann Eder, Euthimios Panagos, Heinz Pozewaunig, and Michael

Rabinovich. Time management in work�ow systems. In 3rd Inter-

national Conference on Business Information Systems (BIS 1999),

pages 265�280, 1999.

[EPR99] Johann Eder, Euthimios Panagos, and Michael Rabinovich. Time

constraints in work�ow systems. In Advanced Information Systems

Engineering, 11th International Conference CAiSE'99, Heidelberg,

Germany, June 14-18, 1999, Proceedings, pages 286�300, 1999.

[EPR13] Johann Eder, Euthimios Panagos, and Michael Rabinovich. Work�ow

time management revisited. In Janis Bubenko, John Krogstie, Oscar

Pastor, Barbara Pernici, Colette Rolland, and Arne Sølvberg, editors,

Seminal Contributions to Information Systems Engineering, pages

207�213. 2013.

[GHJV93] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design patterns: Abstraction and reuse of object-oriented design. In

European Conference on Object-Oriented Programming, pages 406�

431, 1993.

[GKK+11] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Os-

trowski, Torsten Schaub, and Marius Thomas Schneider. Potassco:

The potsdam answer set solving collection. AI Commun., 24(2):107�

124, 2011.



176 BIBLIOGRAPHY

[GKK+16] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Os-

trowski, Torsten Schaub, and Philipp Wanko. Theory solving made

easy with clingo 5. In ICLP (Technical Communications), volume 52

of OASICS, pages 2:1�2:15, 2016.

[GKKS12] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten

Schaub. Answer Set Solving in Practice. Synthesis Lectures on Ar-

ti�cial Intelligence and Machine Learning. Morgan & Claypool Pub-

lishers, 2012.

[HPC12] Luke Hunsberger, Roberto Posenato, and Carlo Combi. The dy-

namic controllability of conditional stns with uncertainty. CoRR,

abs/1212.2005, 2012.

[Kap87] Robert S Kaplan. Accounting and Management: Field Study Per-

spectives: Proceedings of a Colloquium Held June 16-18, 1986, at the

Harvard Business School. Harvard Business School Press, 1987.

[KIG+15] Felix Kossak, Christa Illibauer, Verena Geist, Jan Kubovy, Chris-

tine Natschläger, Thomas Ziebermayr, Theodorich Kopetzky, Bern-

hard Freudenthaler, and Klaus-Dieter Schewe. A Rigorous Semantics

for BPMN 2.0 Process Diagrams. Springer International Publishing,

2015.

[Lie18] Lieferanten und Netzbetreiber Strom and Versorger und Net-

zbetreiber Gas and oee and FGW and ECA and APCS

and AGCS und A&B etc. Spezi�kation zur Umsetzung

der Wechselverordnung gemäÿ Wechselverordnung 2014

und des elektronischen Kündigungsprozesses 2014. https:

//www.energylink.at/energylink/techn.-dokumentation/

aenderungen%20ab%2001.10.2018/Spezifikation%20zur%

20Umsetzung%20der%20Wechselverordnung%20V4.2.pdf, 2018.

[Lif08] Vladimir Lifschitz. What is answer set programming? In Proceedings

of the 23rd National Conference on Arti�cial Intelligence - Volume

3, AAAI'08, pages 1594�1597, 2008.

https://www.energylink.at/energylink/techn.-dokumentation/aenderungen%20ab%2001.10.2018/Spezifikation%20zur%20Umsetzung%20der%20Wechselverordnung%20V4.2.pdf
https://www.energylink.at/energylink/techn.-dokumentation/aenderungen%20ab%2001.10.2018/Spezifikation%20zur%20Umsetzung%20der%20Wechselverordnung%20V4.2.pdf
https://www.energylink.at/energylink/techn.-dokumentation/aenderungen%20ab%2001.10.2018/Spezifikation%20zur%20Umsetzung%20der%20Wechselverordnung%20V4.2.pdf
https://www.energylink.at/energylink/techn.-dokumentation/aenderungen%20ab%2001.10.2018/Spezifikation%20zur%20Umsetzung%20der%20Wechselverordnung%20V4.2.pdf


BIBLIOGRAPHY 177

[LKR13] Andreas Lanz, Jens Kolb, and Manfred Reichert. Enabling person-

alized process schedules with time-aware process views. In CAiSE

2013 Workshops, 2nd Int'l Workshop on Human-Centric Informa-

tion Systems (HCIS 2013), number 148 in Lecture Notes in Business

Information Processing (LNBIP), pages 205�216, 2013.

[LNCY11] Xiao Liu, Zhiwei Ni, Jinjun Chen, and Yun Yang. A probabilistic

strategy for temporal constraint management in scienti�c work�ow

systems. Concurrency and Computation: Practice and Experience,

23(16):1893�1919, 2011.

[LPCR13] Andreas Lanz, Roberto Posenato, Carlo Combi, and Manfred Re-

ichert. Controllability of time-aware processes at run time. In On the

Move to Meaningful Internet Systems, pages 39�56, 2013.

[LRW13] Andreas Lanz, Manfred Reichert, and Barbara Weber. A formal

semantics of time patterns for process-aware information systems.

Technical Report UIB-2013-02, University of Ulm, January 2013.

[LRW16] Andreas Lanz, Manfred Reichert, and Barbara Weber. Process time

patterns: A formal foundation. Information Systems, 57:38 � 68,

2016.

[LSPG06] Ruopeng Lu, Shazia Wasim Sadiq, Vineet Padmanabhan, and Guido

Governatori. Using a temporal constraint network for business pro-

cess execution. In ADC, volume 49 of CRPIT, pages 157�166, 2006.

[LWR09] Andreas Lanz, Barbara Weber, and Manfred Reichert. Time patterns

for process-aware information systems: A pattern-based analysis -

revised version. Technical report, University of Ulm, Ulm, December

2009.

[LWR10] Andreas Lanz, Barbara Weber, and Manfred Reichert. Work�ow

time patterns for process-aware information systems. In Enterprise,

Business-Process and Information Systems Modeling - 11th Interna-

tional Workshop, BPMDS 2010, and 15th International Conference,

EMMSAD 2010, held at CAiSE 2010, pages 94�107, 2010.



178 BIBLIOGRAPHY

[LWR14] Andreas Lanz, Barbara Weber, and Manfred Reichert. Time patterns

for process-aware information systems. Requir. Eng., 19(2):113�141,

2014.

[LY05] Hongchen Li and Yun Yang. Dynamic checking of temporal con-

straints for concurrent work�ows. Electronic Commerce Research and

Applications, 4(2):124 � 142, 2005.

[LYC04] Hongchen Li, Yun Yang, and TY Chen. Resource constraints anal-

ysis of work�ow speci�cations. Journal of Systems and Software,

73(2):271�285, 2004.

[Mar00] Olivera Marjanovic. Dynamic veri�cation of temporal constraints in

production work�ows. In Database Conference, 2000. ADC 2000.

Proceedings. 11th Australasian, pages 74�81, 2000.

[MGR04] Robert Müller, Ulrike Greiner, and Erhard Rahm. Agentwork: a

work�ow system supporting rule-based work�ow adaptation. Data &

Knowledge Engineering, 51(2):223�256, 2004.

[MM05] Paul H Morris and Nicola Muscettola. Temporal dynamic controlla-

bility revisited. In Aaai, pages 1193�1198, 2005.

[MMV01] Paul H Morris, Nicola Muscettola, and Thierry Vidal. Dynamic con-

trol of plans with temporal uncertainty. 2001.

[MO99] Olivera Marjanovic and Maria E Orlowska. On modeling and veri�-

cation of temporal constraints in production work�ows. Knowledge

and Information Systems, 1(2):157�192, 1999.

[MR00] Robert Müller and Erhard Rahm. Dealing with logical failures for

collaborating work�ows. In International Conference on Cooperative

Information Systems, pages 210�223, 2000.

[MRvdA+10] Ronny S Mans, Nick C Russell, Wil MP van der Aalst, Arnold J

Moleman, and Piet JM Bakker. Schedule-aware work�ow manage-

ment systems. In Transactions on Petri nets and other models of

concurrency IV, pages 121�143. 2010.



BIBLIOGRAPHY 179

[Mur89] Tadao Murata. Petri nets: Properties, analysis and applications.

Proceedings of the IEEE, 77(4):541�580, 1989.

[MvdAR+09] Ronny S Mans, Wil MP van der Aalst, Nick C Russell, Piet JM

Bakker, and Arnold J Moleman. Process-aware information system

development for the healthcare domain-consistency, reliability, and

e�ectiveness. In International Conference on Business Process Man-

agement, pages 635�646, 2009.

[OMG13] OMG. Business process model and notation (bpmn), version 2.0.2,

December 2013.

[oP] University of Potsdam. Potsdam answer set solving collection.

https://potassco.org/. Accessed: 2019-12-16.

[PEC17] Horst Pichler, Johann Eder, and Margareta Ciglic. Modelling pro-

cesses with time-dependent control structures. In International Con-

ference on Conceptual Modeling, pages 50�58. Springer, 2017.

[Pic06] Horst Pichler. Time management for work�ow systems. A proba-

bilistic approach for basic and advanced control �ow structures. PhD

thesis, Alpen-Adria-Universitaet Klagenfurt, 2006.

[PWE09] Horst Pichler, Michaela Wenger, and Johann Eder. Composing time-

aware web service orchestrations. In Advanced Information Systems

Engineering, pages 349�363, 2009.

[RM06] Jan C Recker and Jan Mendling. On the translation between bpmn

and bpel: Conceptual mismatch between process modeling languages.

In The 18th International Conference on Advanced Information Sys-

tems Engineering, pages 521�532, 2006.

[RS59] Michael O Rabin and Dana Scott. Finite automata and their decision

problems. IBM J. Res. Dev., 3(2):114�125, 1959.

[RTHEvdA04] Nick Russell, Arthur HM Ter Hofstede, David Edmond, and Wil MP

van der Aalst. Work�ow resource patterns. Technical report, BETA

https://potassco.org/


180 BIBLIOGRAPHY

Working Paper Series, WP 127, Eindhoven University of Technology,

Eindhoven, 2004.

[RTHEvdA05] Nick Russell, Arthur HM Ter Hofstede, David Edmond, and Wil MP

van der Aalst. Work�ow data patterns: Identi�cation, representa-

tion and tool support. In International Conference on Conceptual

Modeling, pages 353�368, 2005.

[RvdAtH06] Nick Russell, Wil MP van der Aalst, and Arthur ter Hofstede. Work-

�ow exception patterns. In International Conference on Advanced

Information Systems Engineering, pages 288�302, 2006.

[SKK05] Jin Hyun Son, Jung Sun Kim, and Myoung Ho Kim. Extracting

the work�ow critical path from the extended well-formed work�ow

schema. J. Comput. Syst. Sci., 70(1):86�106, 2005.

[SMO00] Shazia W Sadiq, Olivera Marjanovic, and Maria E Orlowska. Man-

aging change and time in dynamic work�ow processes. International

Journal of Cooperative Information Systems, 09(01n02):93�116, 2000.

[SO98] Shazia W Sadiq and Maria E Orlowska. Dynamic modi�cation of

work�ows. Technical report, University of Queensland, Department

of Computer Science and Electrical Engineering, 1998.

[Tsc06] Willi Tscheschner. Transformation from epc to bpmn. Business Pro-

cess Technology, 1(3):7�21, 2006.

[VBvdA01] Henricus MW Verbeek, Twan Basten, and Wil MP van der Aalst.

Diagnosing work�ow processes using wo�an. The computer journal,

44(4):246�279, 2001.

[vdA96] Wil MP van der Aalst. Structural characterizations of sound work�ow

nets. Computing Science Reports, 96(23):18�22, 1996.

[vdA98] Wil MP van der Aalst. The application of petri nets to work�ow

management. Journal of circuits, systems, and computers, 8(01):21�

66, 1998.



BIBLIOGRAPHY 181

[vdA13] Wil MP van der Aalst. Business process management: a comprehen-

sive survey. ISRN Software Engineering, 2013, 2013.

[vdA16] Wil MP van der Aalst. Process Mining: Data Science in Action.

Springer Berlin Heidelberg, 2016.

[vdALRS16] Wil MP van der Aalst, Marcello La Rosa, and Flávia Maria Santoro.

Business process management. Business & Information Systems En-

gineering, 58(1):1�6, 2016.

[vdARD05] Wil MP van der Aalst, Michael Rosemann, and Marlon Dumas.

Deadline-based escalation in process-aware information systems.

Technical report, BPMcenter.org, 2005.

[vdASS11] Wil MP van der Aalst, Helen Schonenberg, and Minseok Song. Time

prediction based on process mining. Inf. Syst., 36(2):450�475, 2011.

[vdATHKB03] Wil MP van der Aalst, Arthur HM Ter Hofstede, Bartek Kie-

puszewski, and Alistair P Barros. Work�ow patterns. Distributed

and parallel databases, 14(1):5�51, 2003.

[Vid99] Thierry Vidal. Handling contingency in temporal constraint net-

works: from consistency to controllabilities. Journal of Experimental

& Theoretical Arti�cial Intelligence, 11(1):23�45, 1999.

[Vid00] Thierry Vidal. Controllability characterization and checking in con-

tingent temporal constraint networks. In Proceedings of the Seventh

International Conference on Principles of Knowledge Representation

and Reasoning, KR00, pages 559�570, 2000.

[VvdA00] Eric Verbeek and Wil MP van der Aalst. Wo�an 2.0 a petri-net-

based work�ow diagnosis tool. In Mogens Nielsen and Dan Simpson,

editors, Application and Theory of Petri Nets 2000, pages 475�484,

2000.

[Wes07] Mathias Weske. Business Process Management: Concepts, Lan-

guages, Architectures. Springer Berlin Heidelberg, 2007.



182 BIBLIOGRAPHY

[WM08] Stephen A White and Derek Miers. BPMN Modeling and Reference

Guide: Understanding and Using BPMN. Business Process Manage-

ment Process Modeling. Future Strategies Incorporated, 2008.

[ZMI10] Michael Zur Muehlen and Marta Indulska. Modeling languages for

business processes and business rules: A representational analysis.

Information systems, 35(4):379�390, 2010.

[ZMR13] Michael Zur Muehlen and Jan Recker. How much language is enough?

theoretical and practical use of the business process modeling nota-

tion. In Seminal Contributions to Information Systems Engineering,

pages 429�443. 2013.

[ZPC00] Hai Zhuge, Hung Keng Pung, and To-Yat Cheung. Timed work�ow:

Concept, model, and method. In Web Information Systems Engi-

neering, 2000. Proceedings of the First International Conference on,

volume 1, pages 183�189, 2000.

[ZyCkP01] Hai Zhuge, To yat Cheung, and Hung keng Pung. A timed work�ow

process model. Journal of Systems and Software, 55(3):231 � 243,

2001.


	Introduction
	Problem Definition
	Outline of the Thesis

	Business Process Management
	Business Process Modeling
	Business Process Analysis

	Business Process Time Management
	Business Process Time Patterns
	Durations and Time Lags
	Restricting Execution Times
	Variability
	Recurrent Process Elements

	Modeling and Verification of Temporal Aspects
	Timed Workflow Graph
	Workflow Constraint Graph
	Temporal Workflow

	Cycle Handling Overview

	Extended Time Constraints
	Basic Models and Definitions
	Process Graph
	Loop Instance Type
	Instance Type

	Extended Time Constraints
	Extended Time Constraints Syntax
	Extended Time Constraints Semantic

	Atomic Time Constraints

	Termination Check for Cyclic Processes
	Process Transformation
	Process Graph Transformation
	Extended Time Constraints Transformation

	Time Constraints Inference
	Termination Check

	Prototypical Implementation
	Answer Set Programming
	Prototype Overview
	Prototype Evaluation

	Conclusions and Future Work
	facts.dl
	rulesBasic.dl
	rulesProcessTransformation.dl
	rulesTCInference.dl
	rulesTerminationCheck.dl
	References

