
Julius Köpke

Declarative Semantic Annotations for XML Document
Transformations and their Maintenance

Dissertation

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

Alpen-Adria-Universität Klagenfurt

Fakultät für Technische Wissenschaften

1. Begutachter: O.Univ.-Prof. DI Dr. Johann Eder
Universität Klagenfurt / Institut für Informatik Systeme

2. Begutachter: Prof. Dr. Michele Missikoff
IASI-CNR, Rome

March/2012

Declaration of honour

I hereby confirm on my honour that I personally prepared the present academic work and
carried out myself the activities directly involved with it. I also confirm that I have used
no resources other than those declared. All formulations and concepts adopted literally or in
their essential content from printed, unprinted or Internet sources have been cited according to
the rules for academic work and identified by means of footnotes or other precise indications
of source. The support provided during the work, including significant assistance from my
supervisor has been indicated in full. The academic work has not been submitted to any other
examination authority. The work is submitted in printed and electronic form. I confirm that
the content of the digital version is completely identical to that of the printed version. I am
aware that a false declaration will have legal consequences.

Julius Köpke Klagenfurt, 2012 March 26

iii

Acknowledgements

I’m deeply grateful to my mentor Prof. Johann Eder. His valuable comments, fruitful discus-
sions and the process of working together on publications had a strong impact on my research
skills in general and on this thesis in particular. In addition I want to thank him for providing
a good working environment that allowed me to focus on research.
I also want to thank Prof. Michele Missikoff for peer-reviewing this thesis.

The next group of persons I want to thank are my colleagues from our institute. I especially
want to thank my office-mate Nico Kerschbaumer for many good research discussions and for
always being helpful in many different occasions - especially concerning Latex problems.

Another group of persons that were involved in this research are the master students
Marcin Szymczak and Hannes Hannig who partially worked on the implementation of my
research. My special thanks go to Marcin who worked with strong commitment on the imple-
mentation of the matching engine.

Working on a dissertation has no boundaries with regard to time and location. This requires
patience from the persons in one’s environment. I want to thank my family and friends for
their support and patience. This holds especially for Sabrina. To her I dedicate this thesis.

v

Abstract

Semantic annotations of XML-Schemas allow the interpretation of the schema elements with
the help of a reference ontology. This can be a driver for the integration of heterogenous
applications, where the exchanged messages needs to be transformed to the required target
format. Since an ontology conceptualizes some real-world domain and the real world con-
stantly evolves also the reference ontology needs to evolve over time. This has consequences
for the semantic annotations that need to be maintained in order to comply with the new
version of the reference ontology. In addition such an evolving reference ontology gets an
additional function: It does not only express the domain at some specific point in time - it can
also express the evolution of the domain. This information can be used to (semi-) automatically
maintain the annotations and to detect changes that have consequences for the interpretation
of instance data. This may require to change instance data in order to allow a correct inter-
pretation with the latest ontology version. In this thesis we will present a purely declarative
annotation method for XML-Schemas, matching and mapping methods for schemas that are
annotated with the proposed annotations, methods for the representation of ontology changes,
methods for the maintenance of annotations with regard to structure and logics and finally the
detection of schema elements, where the interpretation of the data has potentially changed.

vii

Contents

1 Introduction 1
1.1 Contents of the Thesis . 3

1.1.1 Semantic Annotation . 3
1.1.2 Schema Mapping . 3
1.1.3 Change Representation . 5
1.1.4 Annotation Maintenance . 6
1.1.5 Detection of Semantic Changes . 6

1.2 Preliminaries . 6
1.2.1 Interoperability . 7
1.2.2 XML-Schema . 7
1.2.3 Ontologies . 7
1.2.4 Ontology Formalisms and Languages . 8

2 Semantic Annotation 11
2.1 Motivating Example . 12
2.2 Annotation Method . 14

2.2.1 Formal Definition of the Annotation Method 15
2.2.2 Reuse of Global Types or Elements . 16

2.3 Transformation of Annotation Paths to Ontology Concepts 17
2.4 Validation of Annotations . 18
2.5 Related Work . 19
2.6 Conclusion . 20

3 XML-Schema Matching and Mapping 21
3.1 Introduction . 21

3.1.1 Schema Matching . 22
3.1.2 Complex Matches . 24
3.1.3 Matching Approaches for XML-Schema . 26

3.2 Annotation based XML-Schema Matching . 27
3.2.1 Schema Mapping Model . 27
3.2.2 Semantic Relations between Annotations for Simple Matches 28

ix

3.2.3 Semantic Relations between Annotations for Complex Matches 30
3.2.4 Mapping Workflow . 36

3.3 Mismatch Resolution . 38
3.3.1 Lossless Mismatches . 38
3.3.2 Lossy Mismatches . 42
3.3.3 Discussion . 43

3.4 Proof of Concept Implementation . 44
3.4.1 Annotation Matching Phase . 44
3.4.2 Node Mapping Phase . 46
3.4.3 Output Generation . 47

3.5 Performance Evaluation . 47
3.5.1 Lifting/Lowering Implementation . 48
3.5.2 Evaluation Setting . 49
3.5.3 Experimental Results . 50

3.6 Conclusion . 53

4 Change Representation 55
4.1 Change Representation Requirements . 55
4.2 Differences between OWL and Frame-Based Ontologies 56
4.3 Ontology Changes . 58
4.4 Survey . 59

4.4.1 Ontology Evolution Management . 60
4.4.2 Ontology Comparison Approaches . 61
4.4.3 Change-Tracing Approaches . 64
4.4.4 Change Modeling . 66
4.4.5 Ontology Evolution Systems . 68
4.4.6 Ontology Mapping and Multi-Version Reasoning 69
4.4.7 Discussion of the Approaches . 70

4.5 Change Representation Approach . 73
4.5.1 Meta Ontology . 74
4.5.2 Change Ontology . 75
4.5.3 Implementation . 78

4.6 Conclusion . 80

5 Structural Maintenance of Annotations 83
5.1 Annotation Change Operations . 83

5.1.1 Problem Definition . 83
5.1.2 Local Changes . 84
5.1.3 Global Changes . 84
5.1.4 Change Transactions . 84

5.2 Structural Invalidation of Annotation Paths . 85

x

5.3 Evolution Strategies for Structurally Invalid Paths 87
5.3.1 Atomic Evolution Strategies for Missing-Reference-Invalidations 87
5.3.2 Composite Evolution Strategies for Missing-Reference-Invalidations . . . 89
5.3.3 Evolution Strategies for Wrong-Type Invalidations 92

5.4 Annotation Maintenance using Mapping Composition 94
5.5 Conclusion . 95

6 Logical Invalidation of Annotations 97
6.1 Annotation Method . 98
6.2 Logical Invalidation of Annotation Paths . 99

6.2.1 Invalidation of Simple Concept Annotations 100
6.2.2 Invalidation of Simple Datatype Annotations: 100
6.2.3 Invalidation of 3-Step Concept Annotations 101

6.3 Invalidation of General Annotations . 102
6.3.1 Invalidation of General Annotation due to Local Invalidations 103
6.3.2 Direct-Triple-Disjointness . 104
6.3.3 Non-Local Invalidations . 105
6.3.4 An Algorithm for the Detection of a Minimal Invalid Sub-Path 110

6.4 Implementation Considerations . 112
6.5 Additional Justifications of Invalidations in Annotation Paths 113

6.5.1 General Justifications . 113
6.5.2 Justifications after Ontology Evolution . 115

6.6 Related Work . 116
6.7 Conclusion . 117

7 Detection of Semantic Changes 119
7.1 Semantic Changes and their Automatic Detection 119
7.2 Requirements for Explicit Dependency-Definitions 122
7.3 Definition of Change-Dependencies . 123

7.3.1 Integrity Constraints on Annotation Path 124
7.3.2 Integrity Constraints on Dependency Definition Path 125

7.4 Detection of Semantic Changes . 125
7.5 Proof of Concept Implementation . 130
7.6 Related Work . 130
7.7 Conclusion . 131

8 Case Study 133
8.1 The Setting . 133
8.2 Example Ontology . 134
8.3 Example Annotations . 136
8.4 Mapping Generation . 137
8.5 Ontology Changes . 137

xi

8.6 Structural and Logical Annotation Maintenance 138
8.7 Detection of Semantic Changes . 141
8.8 Conclusion . 142

9 Conclusion 143

10 Appendix 147

xii

List of Figures

1.1 XML document transformations using the lifting/lowering approach 4
1.2 XML document transformations using annotation based schema-mapping . . . 5

2.1 Example reference ontology . 12
2.2 Example XML-Schema with standard model-references 13
2.3 Example XML-Schema with the proposed annotation method 14

3.1 Match processing in COMA [21] . 24
3.2 A Meta-Model of the proposed XML-Schema mapping approach 28
3.3 Finding complex matches with annotated transformation templates 32
3.4 Schema mapping workflow . 37
3.5 Example reference ontology . 39
3.6 Example mapping . 40
3.7 Phases of the proof of concept implementation . 44
3.8 Screenshot of the semantic matching phase of the prototype 45
3.9 Generated output opened in Altova MapForce . 48
3.10 Transformation duration in seconds for n documents containing 1 item 51
3.11 Transformation duration in seconds for n documents containing 10 items 52
3.12 Transformation duration in seconds of n documents containing 100 items 53

4.1 5-phase ontology evolution approach of [80] . 65
4.2 The main classes of the OWL2 change ontology [76] 67
4.3 Proposed change representation approach . 74
4.4 Ontology meta-model . 75
4.5 Class hierarchy of the change ontology . 76

5.1 Example ontology for evolution strategies for structural invalidations 89
5.2 Annotation maintenance using mapping-composition 95

6.1 Example of direct-triple-disjointness . 104
6.2 The black-box MUPS algorithm from [45] . 114

7.1 Example ontology . 120

xiii

7.2 Meta-model of the change-dependency definitions 125

8.1 Building-blocks for semantic annotations in an evolving environment 134
8.2 Example car ontology first version . 135
8.3 Screen-shot of the mapping-prototype . 137
8.4 Automatically generated mapping . 138
8.5 Example car ontology second version . 139
8.6 Instances of the change ontology . 140

1 Source of mismatch example source schema page 1 148
2 Source of mismatch example source schema page 2 149
3 Source of mismatch example target schema . 150

xiv

Listings

2.1 Representation of a concept annotation path in OWL 17
2.2 Representation of a datatype annotation path in OWL 18
4.1 Example SPARQL query for the detection of added subconcepts 80
5.1 Structural validation of an annotation path . 86
5.2 Algorithm for the generation of candidate replacements for invalid concept-steps 91
5.3 Definition of getReplacementConcept() . 91
6.1 Representation of an annotation path in OWL . 98
6.2 Example ontology for direct-triple-disjointness invalidations 104
6.3 A non local invalidation . 105
6.4 Example ontology for an indirect restriction chain 107
6.5 Example ontology for a non local invalidation with a non-inverse-chain 107
6.6 Example ontology for a non local invalidation with an indirect non-inverse-chain 108
6.7 Example ontology for a MIS that is caused by transitive properties 108
6.8 Example ontology for a non local invalidation by a property chain 109
6.9 Example ontology for a non local invalidations by a mixed chain 110
6.10 An algorithm for the detection of the minimal invalid sub-path 111
8.1 Example annotations of schema 1 . 136
8.2 Example annotations of schema 2 . 136
8.3 Generated output for the detection of semantic changes 142

xv

xvi

1

Chapter1
Introduction

1 Interoperability between enterprises, in particular document exchange and inter-
organizational business processes [33] is a key problem in enterprise integration. XML
and Web Service technologies support syntactic interoperability. They allow the manual
implementation of interoperating services with comparable low setup-costs. Therefore, these
technologies are well suited for interoperability on the syntactic level but they do not address
the semantic level which is therefore, realized manually by programmers. Technologies from
the Semantic Web address this issue by adding semantics to allow interoperable applications
on the syntactic and the semantic layer. It is hoped that this will further reduce the setup
costs for interoperating services. However, the implementation of interoperability software
is a considerable effort. A limiting factor for the return of this investment is the expected
life-time of interoperability layers. A major problem for partners establishing interoperating
services is the evolution of the participating information systems. Here maintenance of
interoperability software is a major concern. Since partners - respectively their information
systems - constantly undergo changes to improve and adapt to new constraints, regulations
or requirements, the software layers have to be changed as well. This typically causes main-
tenance costs which can be higher - over the lifetime - than the initial costs for the setup of
the interoperating application. This fact has another consequence: The evolution in hetero-
geneous systems which should take place to adapt to new requirements is often not realized
because of the expected adaption costs. Semantic Web Technologies can solve this evolution
problem intrinsically as long as the semantic level stays unchanged and changes appear on the
syntactic level. The semantic level does not change as long as the domain model (ontology)
does not change. Unfortunately, changes in the domain are typical reasons for the evolution
of information systems. Therefore, changes on the semantic level must be addressed.
Another constraint for the successful application is that the solutions have to scale up to high
volume interactions as they are frequent in enterprise integration. From the perspective of
the Semantic Web instance data are represented on the semantic level such as RDF [66] or

1Parts of this chapter have been published in [24]

1

2 1 Introduction

OWL [19] instances. Unfortunately, computation on the semantic level is usually extremely
expensive due to reasoning and therefore, does not scale up for enterprise-scale applications.
On the one hand we suppose that XML technologies are and will be the key technologies in
enterprise-scale applications and that they will not be substituted by technologies from the
Semantic Web in the near future. On the other hand the latter technologies are well-suited
to express semantics. In such a scenario semantic annotation can be used to get the best of
both worlds: The syntactic format is still XML and semantics are expressed with annotations.
Semantic annotations are already used for document reconciliation in mediator architectures
[64] [35]. They can perform as a driver for interoperability because they can drastically
reduce the mapping afford between interoperating systems. Nevertheless, there are different
types of semantic annotations. On the one hand there are purely declarative annotations and
on the other hand there are mappings that basically transform XML-instance data to their
semantic representation. The latter ones allow a maximum on flexibility but we claim that
their application has a negative impact on the scalability as well as on the maintainability,
when the ontology evolves.

Therefore, we propose an architecture for interoperability in an evolving environment that
intends to overcome the described limitations. It focuses on the problem, that XML-business
documents need to be transformed before they can be exchanged between different partners
because they use heterogenous XML-Schemas. Those schemas are annotated with a common
reference ontology. Since the ontology is not assumed to be static changes in the ontology
can have impact on the annotations and the semantics of the instance documents. In such a
scenario the ontology gets an additional function: It does not only model a snapshot of the
real-world domain at some point in time - it also expresses the changes. This can be valuable
information for the adaption of the information systems of the involved parties.

The contributions of this research are the following:

• A declarative semantic annotation method for XML-Schemas.

• Schema mapping methods based on the proposed annotation method.

• Methods for the proper representation of ontology changes.

• Methods for the structural and logical maintenance of annotations when the ontology
evolves.

• Detection methods for semantic changes after ontology evolution.

The aim of this thesis is pure research that identifies the required sub-problems and
proposes solutions. It should be a basis for the future implementation of a tool-set. We will
describe the contributions in more detail in section 1.1 and provide a case study in chapter 8
that aims to demonstrate how the different contributions of this research can be used together
in a possible use-case.

11.1. Contents of the Thesis 3

Publications: The results of this research were published in numerous publications. We
have published the general problem of semantic annotations of XML-Schemas in an evolving
environment in [24]. The declarative annotation method for XML-Schemas was published in
[57]. The implementation of the annotation based schema mapping approach was published
in [96]. In [58], we have published the change-representation method and the detection of
semantic changes. The detection of logical invalidations was published in [59].

1.1 Contents of the Thesis

In this section we will briefly describe the chapters of this thesis. This description is aimed for a
reader who is well schooled in the areas of interoperability and ontologies. For unexperienced
readers in these areas we suggest to read section 1.2 which shortly introduces the terms first.

1.1.1 Semantic Annotation

An XML-Schema does not define the semantics of the schema elements (see section 1.2.2). One
way to allow semantic interoperability (see section 1.2.1) is to annotate XML-Schemas with
a reference ontology. A W3C recommendation for semantic annotations is SAWSDL [56]. It
focuses on the semantic annotation of web service descriptions WSDL [5] but also allows the
annotation of arbitrary XML-Schemas [100]. The standard defines two different kinds of an-
notations. On the one hand declarative annotations that link schema elements to concepts of
the reference ontology and on the other hand transformation scripts that transform instance
data to ontology instances and vice-versa. Such a transformation script can for example tech-
nically be realized by XSLT-Scripts [100] that transform the XML-data to RDF-Data [66] and
vice-versa. In this research we focus on purely declarative annotations. We have discovered
that the declarative annotations that are proposed by SAWSDL do not provide the proper ex-
pressivity and have therefore, proposed an enhanced method that is still purely declarative
but allows the description of the schema elements in more detail. The complete annotation
method can be found in chapter 2.

1.1.2 Schema Mapping

A schema that is annotated with a reference ontology can be mapped to another schema that
is annotated with the same ontology by exploiting the explicitly defined semantics of the
schema elements. The main purpose of such a mapping in this research is the generation
of data transformations between the different schemas. There are two main approaches on
how data-transformations that are based on semantic annotations can be realized. First of all,
there is the lifting/lowering approach. In this case the annotations are scripts that transform

4 1 Introduction

Figure 1.1: XML document transformations using the lifting/lowering approach

the XML-instances to instances of the reference ontology and vice-versa. When documents
are transformed between two XML-Schemas they are first lifted to ontology instances, then
processed on the ontology level using standard reasoning methods and rule languages and
are finally lowered to documents of the target XML-Schema. The overall scenario of such an
approach is depicted in figure 1.1.

We propose another approach based on declarative annotations that allows the genera-
tion of schema mappings. Those mappings can be used to generate scripts e.g. XSLT [15]
that directly transform instance documents from the source schema to instances of the target
schema. The overall approach is depicted in figure 1.2. We propose that this approach has
several advantages over the lifting/lowering approach. First of all, the schema matching and
transformation script generation is only required once at build-time. After that the XML doc-
uments can be processed on the XML-level without using the reference ontology at all. This
should have an enormous effect on the scalability of the approach. In addition we suppose
that declarative annotations that are based on a well-defined annotation method have the ad-
vantage that when the ontology evolves possible repair actions to maintain the annotations
can be generated. We will discuss mapping methods and a prototype implementation for
XML-Schemas that are annotated with our proposed annotation method in chapter 3. This

11.1. Contents of the Thesis 5

<XSD>

<XML> <XML>

<XSD>

Reference Ontology

Annotation Layer Annotation Layer

Build-Time
Schema Matching

Annotations Annotations

Build-Time
XSLT Generation

Runtime XSLT
Transformation

Figure 1.2: XML document transformations using annotation based schema-mapping

chapter also presents a performance evaluation of our prototype implementation against an
implementation of the lifting/lowering approach. In addition to a pure lifting and lowering
approach there also exist hybrid approaches, where lifting/lowering scripts are generated with
the help of declarative annotations [98]. This is not in the scope of this research.

1.1.3 Change Representation

Our aim is to maintain the annotations and to detect semantic changes, when the ontology
evolves. This requires a declarative representation of ontology changes. The representation
of changes depends on the used ontology formalism. In addition to a representation of the
changes that occurred, it is also necessary to allow reasoning support over the consequences
of the changes. This is especially necessary for the detection of semantic changes.
In chapter 4 we will first of all, discuss the requirements for change-representation and provide
a survey on related work in the field of ontology evolution. Finally, we present our change-
representation approach that can be used for the structural and logical annotation maintenance
and for the detection of semantic changes using standard Semantic Web technologies.

6 1 Introduction

1.1.4 Annotation Maintenance

When the ontology evolves the annotations of the schemas need to be maintained. This main-
tenance requires change operations over annotations. There are multiple levels on which an
annotation can get invalid with regard to a new ontology version. First of all, it can get
structurally invalid. An annotation is structurally invalid, when the annotations does not still
comply with the structural requirements of the annotation method. An example for a struc-
turally invalid annotation is an annotation that references a non existing ontology element.
Such an error can automatically be repaired, when the change-representation contains infor-
mation about what has happened to the missing ontology element. We will present change
operations and methods for the structural repair of annotation in chapter 5.
Another type of invalidations are logical invalidations. An annotation is logically invalid,
when it contradicts with the reference ontology. In this case it is important to detect what
element(s) of the annotations are responsible for the logical clash. We will provide an in depth
analysis of logical invalidations and algorithms and methods to detect the causes for the in-
validations in chapter 6.

1.1.5 Detection of Semantic Changes

In case of structural and logical invalid annotations the elements that needs to be maintained
are the annotations. In contrast in case of semantic changes the semantics of the real-world has
changed in a way that it has consequences for the instance data. This may require to transform
the instance data in order to comply with the new ontology version. We will illustrate the
problem with a small example: We suppose there are XML documents of different years that
contain data about the population of the European Union. The schema and the annotations
were never changed and thus, no annotation maintenance is required. This does not mean
that the population data of the different documents can be compared. In fact they cannot
be compared because additional countries joined the European Union. We need methods to
detect such changes in order to warn the user about changes that have consequences for the
interpretation of instance data. An approach that is based on explicit dependency definitions
over the ontology elements is proposed in chapter 7.

1.2 Preliminaries

In this section we will briefly introduce interoperability, XML-Schema and ontologies because
the terms are extensively used during the rest of the thesis.

11.2. Preliminaries 7

1.2.1 Interoperability

The IEEE defines interoperability as the ability of two or more systems or components to exchange
information and to use the information that has been exchanged [74]. This definition contains two re-
quirements: First the information needs to be exchanged in a format that allows the exchange
of information between different systems. This is typically called syntactic interoperability
and can for example be realized in form of messages that are represented in form of XML [6]
documents. The second part of the definition states that the systems must be able to use the
exchanged data. This requires that the meaning of the data is known to the interoperating sys-
tems. It is typically considered as semantic interoperability. This can for example be achieved
by the usage of a common data-model. This can be a standard data-model or an ontology that
defines the semantics of the application domain.
When we assume that the world is non static interoperability is not only required between
different information systems but also between different versions of one system. Thus, in-
teroperability with regard to time allows to correctly process data that was created with a
different version of the same information system.

1.2.2 XML-Schema

As described in the last subsection XML can be used as a basis for syntactic interoperability.
XML alone only defines the markup language that is used to exchange documents. In order to
process the exchanged messages the structure of the messages needs to be defined. The most
important standard to define the structure/format of XML documents is XML-Schema [100].
An XML-Schema is itself an XML document. It consists of definitions for elements, attributes,
simple types and complex types. There exists a predefines set of simples types (such as string,
integer, ...) which can be extended by the user. In contrast to simple types, complex types are
used to define structures that consists of sets of elements. XML allows to reference elements
or types from other elements which can be used to reuse definitions. When multiple partners
agree on a common XML-Schema for the exchange of messages their software systems can rely
on the format of the exchanged XML-documents. This allows the systems to correctly parse
the data and enables syntactic interoperability. In contrast XML-Schema does not describe
the semantics of the schema elements in a machine interpretable form. Thus, is does not
allow semantic interoperability. In this research we use semantic annotations with a reference
ontology to define the semantics of the schema elements.

1.2.3 Ontologies

As described in subsection 1.2.1 ontologies can act as a driver for semantic interoperability.
The simplest form of an ontology is a taxonomy. It is organized in form of a simple tree struc-
ture that defines terms of some real-world domain. Examples for taxonomies are biological

8 1 Introduction

classifications. In a taxonomy we could for example state that tigers and leopards are carni-
vore by representing tiger and leopards as child-nodes of carnivore. In addition to such a tree
representation there is no additional description of the nodes and there is typically only one
relation-type allowed. In our example it is a isA relation that states that all tigers and leopards
are carnivores. A taxonomy has very limited expressiveness. However, in many application
domains taxonomies can be used as a powerful source of knowledge.
In contrast to a taxonomy a general ontology allows the description of the domain in much
more detail. According to [36], An ontology is a formal explicit specification of a shared conceptu-
alization. An ontology typically defines concepts, properties and individuals of some domain.
Concepts are also often referred as classes, properties are often referred as roles and both are
structured in subsumption hierarchies. The hierarchies are not limited to tree structures. A
concept is typically described by defining its extend. The extent is the set of individuals that
are members of that class. This definition can be realized by defining the properties that in-
dividuals of a specific class have. For example we can state a person is a human being and
it has a birthdate, where the property birthdate connects an individual of the class person to
some date. In addition a person has the (object) property hasMother that links an individual
of a person to another individual of a person. According to the used modeling formalism
additional semantical constructs are allowed to define concepts and properties more precisely.
Nevertheless, hierarchies of classes and properties build the explicit backbone of an ontology,
but the explicit class or property hierarchy is not necessarily equal to the inferred hierarchy.
Ontologies can be based on very expressive and undecidable modeling formalism which lim-
its the practical usefulness. Therefore, for computational purposes typically restricted logical
foundations are used for ontologies.

1.2.4 Ontology Formalisms and Languages

In addition to the general types of ontologies there are different modeling formalisms and
languages for ontologies which have influence on their expressive power. We will discuss
the most commonly used ones Frames, RDF-Schema and OWL description logics in the next
subsections.

Frame-Systems

One of the first methods for the representation of knowledge bases and also for ontologies are
frame-systems. They were first introduced by Marvin Minsky [67] and are used in numerous
knowledge-based systems [30]. The popular ontology editor protege2 used a frame-based on-
tology representation until version 3. The basic principle of frame-based systems are frames.
A frame can represent objects as well as classes of objects. A frame that represents a class
can have multiple superclasses, while a frame that represents an object can be a member of

2http://protege.stanford.edu/

11.2. Preliminaries 9

multiple classes. A frame that describes a class is just a member of the class classes. Therefore,
this approach is suitable for meta-modeling. The superclass relation allows the definition of
subsumption hierarchies including multiple inheritance. In order to describe the properties of
a specific class or object slots are used. Typically classes use MemberSlots that define that all
objects of this specific class have this slot (the class is a prototype for the objects). In case of
frames for objects ownSlots are used to express that the specific object has an assertion for a
specific property. In addition ownSlots can also be used to describe properties that apply to a
class itself and not to its objects. A slot can refer to a slot from another frame. For example a
height slot of a car can refer to the height slot of physical objects. Facets are used to restrict the
values of the slots. Typical predefined facets are cardinality (min and max), classes of values
and lists of possible values.
Frame-Systems typically allow taxonomic reasoning and the definition of custom production
rules in order to build expert-systems. Reasoning typically relies on the unique name assump-
tion (can be an internal unique name with non-unique labels for users) and the closed world
assumption. Thus, things that have different identifiers are considered to be different as long
as they are not stated to be equal. The closed world assumption has the consequence that ev-
erything that cannot explicitly be proofed to be true is considered to be false and only things
that are stated to be allowed are allowed.

RDF-Schema

RDF-Schema/RDFS [7] is a very limited ontology language that basically allows to define a
class and a property hierarchy. Properties have a domain and a range that defines the classes
that are subjects and objects of that property. RDF resources can be defined to be instances of
some class. This already allows simple taxonomic reasoning and the addition of inferred class
or property assertions to an RDF-graph.

Description Logics and OWL

Another widely used formalism for ontologies are description logics (DL) which are formal
decidable fragments of first order logics. They have been used for ontology modeling for a
long time and are also the foundation of the ontology standard of the W3C OWL(2) DL [19, 75].
By applying formal semantics they allow to infer additional knowledge. This reasoning sup-
port is an important feature for an ontology language. There are different kinds of description
logics that have differences in their expressivity. This has consequences on the computational
complexity and decidability of the specific description logics. The basic building-blocks of
description logics ontologies are: Abox Axioms, Tbox Axioms and Rbox axioms.
Abox axioms assert knowledge to individuals. This can either be concept assertions that de-
fine that some individual belongs to some class such as person(john) or role assertions such as
friend(john,marc). In addition individuals can be stated to be same as other individuals or to

10 1 Introduction

be different from other individuals. Tbox axioms relate concepts with other concepts. Typical
relations are subclass, equivalent-class and class disjointness.
Rbox axioms define the relations between roles/properties. This can be axioms over the prop-
erty hierarchy, disjointness axioms or role inclusion axioms (see property chains in OWL in
section 6.3.3).
In addition DL-based ontology languages typically support different kinds of constructors
for concepts and roles. For concepts this can be union, intersection or negation. In addition
concepts can be constructed by role restrictions. Such restrictions restrict roles on concepts.
They can be expressed with existential or universal quantification or cardinality restrictions. A
(qualified) role restriction on a concept can for example express that each person has exactly
one hasFather relation to some male person. Finally, classes can be constructed by enumerating
their individuals.
There is typically only a limited number of role constructors in ontology languages. An ex-
ample is the definition of inverse roles. This allows for example to specify that childO f is the
inverse role of parentO f . In addition property characteristics can be used to characterize roles
in form of the typical properties of relations: transitivity, symmetry, asymmetry, reflexivity,
and irreflexivity. The definition of the domain and range of a property can logically be ex-
pressed by using the top-concept (in OWL Thing). For example the domain of writesExam is
a Student can be defined as: ∃ writesExam.Thing v Person, the range Exam can be defined as
Thing v ∀ writesExam.Exam.
OWL DL is a sub-language of OWL that is based on description logics. The described prop-
erties of DL-languages for ontologies directly comply with the formal grounding SROIQ of
OWL2 DL. We will not go into detail for this work and refer the interested reader to [60]. Most
additional constructs of OWL-DL are just syntactic sugaring and can be mapped to DL. OWL
reasoning is based on the absence of the unique name assumption and uses the open world
assumption. [60]

2

Chapter2
Semantic Annotation

1 Semantic annotation is proposed to be a good solution to enable interoperable applications
[97]. Semantic annotations represent the relationships between an annotated artifact (web
page, XML document, schema, web service, etc.) and a reference ontology. Semantic anno-
tation at the instance level received a lot of attention [97], however annotation at the XML-
Schema level [56] is used in a much lesser degree. Semantic annotations of XML-Schema can
be used to lift data from XML documents to some semantic representation such as RDF [66] or
OWL [19] instances. Therefore, a transformation of a document from a source XML-Schema
to a document that complies with the target XML-Schema can be created by lifting the data
from the source document to its semantic representation, (e.g. ontology instances) make some
computations on the ontology-level and lower it back to the XML representation of the target
schema. The scenario is shown graphically in figure 1.1. Such an approach is very flexible
and powerful on the one hand but requires expensive semantic processing of every instance
document on the other hand. Therefore, we propose to generate transformation scripts with
knowledge from the ontology to achieve industry-scale performance. This requires the anno-
tation of the source and the target schema in a declarative way. Such annotations allow the
matching of the source and the target schema at build time (see figure 1.2). The resulting map-
ping can then be used to create transformation scripts [42] (e.g. XSLT) that directly operate on
the XML documents without the need to lift instance data to the ontology.

Both approaches are addressed in the W3C recommendation SAWSDL [56]. The lifting
and lowering approach is realized by the specification of references to arbitrary scripts that
perform the lifting or lowering of instance data. The declarative annotations can be realized by
so called model-references. A model-reference forms a relation between a schema element (XML-
element, XML-type or XML-property declaration) and a concept of some semantic model. In
this chapter we will investigate the applicability of SAWSDL model-references for the declar-
ative annotation of XML-Schemas with a reference ontology. We will discuss shortcomings

1Parts of this chapter have been published in [57]

11

12 2 Semantic Annotation

Figure 2.1: Example reference ontology

and present an annotation method that solves these problems while being compatible with
SAWSDL. These annotations are the basis for the schema mapping and transformation gener-
ation approach in chapter 3.

2.1 Motivating Example

In order to show shortcomings of plain model-references we will first introduce an example.
We will try to use model-references for the direct annotation of a simple XML-Schema of
a business document shown in figure 2.2 with a small reference ontology that is shown in
figure 2.1. The domain of a SAWSDL model-reference is an XML-element, XML-type or XML-
attribute declaration of an XML-Schema. The range is a list of URIs that point to concepts of
a semantic model. If multiple URIs are specified, every URI applies to the annotated element.
No further relationships between the different URIs can be specified.

2

2.1. Motivating Example 13

Figure 2.2: Example XML-Schema with standard model-references

In figure 2.2 an example order document is shown. It is directly annotated with the refer-
ence ontology (see figure 2.1). We will now investigate whether the correct semantics of each
element can be defined.

• The element BuyerZipcode could not be annotated at all because the zip-code is modeled
in form of a datatype-property and not by a concept in the ontology. The same problem
exists for the BuyerStreet element and for the name of an item.

• The BuyerCountry element is annotated with the concept country. This does not fully
express the semantics because we do not know that the element should contain the
country of the buying-party. In addition the SellerCountry element has exactly the same
annotation and can therefore, not be distinguished.

• The attribute Price is annotated with the concept Price. Unfortunately this does not
capture the semantics. We do not know the subject of the price (an item) and we do not
know the currency.

In the examples above we assumed that we have only annotated data-carrying elements. If
we would in addition annotate the parent elements in this case the order element we could add
a bit more semantic information. It would be clear that the annotations of the child-elements of
the order-element can be seen in the context of an order. Unfortunately this would not help for

14 2 Semantic Annotation

Figure 2.3: Example XML-Schema with the proposed annotation method

the ambiguities between the BuyerCountry- and the SellerCountry element. In general, it would
require a very strong structural relatedness between the ontology and the annotated XML-
Schema which we cannot guarantee when many different schemas are annotated with a single
reference ontology. In addition SAWSDL does not define that there are any relations between
the annotations of parent and child elements. Nevertheless, such annotations could help to
provide additional knowledge to structural XML-matching methods such as [85]. Another
solution is the usage of a more specific reference ontology which contains concepts that fully
match the semantics of each annotated element. For example it would need to contain the
concept InvoiceBuyerCountry and InvoiceBuyerZipCode. Enhancing a general reference ontology
with all possible combinations of concepts leads to a combinatorial explosion. This is definitely
not suitable for the annotation with a general reference ontology but can nevertheless, be used
if very specific ontologies are used for the annotation.

2.2 Annotation Method

As shown in section 2.1 the direct usage of model-references is not suitable for the annotation
of XML-Schemas with a reference ontology. To overcome this shortcoming we propose to
create the required more specific ontology concepts out of well defined path expressions at
runtime of the schema-matching engine. We will first introduce the path expressions with
some examples and provide the formal definitions in section 2.2.1.

The example schema document in figure 2.3 is annotated with the proposed path
expressions. We will discuss some examples: The element BuyerZipcode is annotated
with /Order/deliverTo/Address/hasZipCode. The annotation of the BuyerCountry element is

2

2.2. Annotation Method 15

/Order/billTo/Buyer/hasCountry/Country. The steps that are marked bold refer to concepts. The
other steps refer to object-properties or datatype-properties of the reference ontology. Now
the BuyerCountry element can clearly be distinguished from the SellerCountry element and the
elements BuyerZipcode and BuyerStreet can be annotated. The shown paths refer to concepts,
object properties and datatype properties. Another requirement could be to address instances
of the ontology. For example the path /Order/billTo/Buyer[Mr_Smith]/hasCountry/Country de-
fines that the Buyer is restricted to one specific buyer with the URI Mr_Simth.
In most cases we assume that a simple annotation path as shown in the examples above is
sufficient for an annotation. Nevertheless, there can be cases where additional restrictions are
required: When using a simple path expressions as shown above the Price attribute of the ex-
ample schema can be annotated with /Order/hasitems/Item/hasPrice/Price. Unfortunately, this
does not express the currency of the price. Since the example ontology has no specialized
price-concept for each currency we need to define the price within the annotation. The cor-
rect currency of a price can be defined by a restriction on the price concept. This restriction
is denoted in square brackets and expresses that the price must have a hasCurrency prop-
erty that points to the concept Euro. This leads to the full annotation of the Price attribute:
/Order/hasitems/Item/hasPrice/Price[hasCurrency/Euro].

2.2.1 Formal Definition of the Annotation Method

In order to define the annotation method we will first introduce definitions for the reference
ontology and an annotated schema.

Definition 1. Ontology:

An ontology O is a tuple O = (C, DP, OP, I, A), where C is a set of concepts (also often
referred as classes), DP as set of datatype-properties, OP a set of object-properties, I a set of
individuals and A a set of axioms over C, DP, OP, and I. Each element in C, DP and OP is a
tuple (uri, de f inition). All URIs of concepts can be obtained by C.uri, URIs of properties by
DP.uri and OP.uri and URIs of instances by I.uri respectively.

Definition 2. Annotated XML-Schema:

An annotated XML-Schema S is a tuple S = (T, E, A), where T is a set of types, E a set
of elements, and A is a set of semantic annotations. An XML-Schema forms a tree structure.
Each t ∈ T has a type e.type = {simple | complex}, an optional name t.name and an optional
SAWSDL mode reference t.annotation ∈ A. An element e ∈ E can have an optional type
e.type ∈ T, an optional SAWSDL model-reference e.annotation ∈ A and a set of attributes
e.attribute. Each attribute a ∈ e.attribute can have a simple type a.type ∈ T and an optional
model-reference a.annotation ∈ A. Each annotation must be a valid annotation path according
to definition 3 and 4.

16 2 Semantic Annotation

Definition 3. Annotation Path:

The set of all annotation path expressions is P. An annotation path p ∈ P is a sequence
of steps. Each step is a tuple s=(uri, type, res). The value s.uri of a step is some URI of an
element of the reference ontology O. The type s.type can be cs for a concept-step, op for an
object-property step or dp for a datatype-property step. The URI s.uri determines the type of
the step: s.uri ∈ C.uri ⇒ s.type = cs; s.uri ∈ OP.uri ⇒ s.type = op; s.uri ∈ DP.uri ⇒ s.type
= dp. Only concept-steps may have a set of restrictions s.res. Each restriction ∈ s.res can
either be an individual ∈ I.uri or a restricting path expression. Such a path expression adds
a restriction to the corresponding step s. If s.res contains multiple restrictions they all apply
to the corresponding step s (logical and). The succeeding step of s in p can be obtained by
s.succ, the previous step by s.prev. The first step of p is denoted fs and the last step ls. Each
annotation path p ∈ P has a type ∈ {ConceptAnnotation, DataTypeProperyAnnotation}. The
type of the path is defined by the type of the last step.

Definition 4. An annotation path is structurally valid iff:

• fs.type = cs - The first step must refer to a concept.

• ls.type = {dp|cs} - The last step must refer to a concept or a datatype-property.

• ∀s ∈ p|s.type = cs ∧ s 6= ls ⇒ s.succ.type = {dp|op} - The successor of a concept-step
must be an object-property or datatype-property step.

• ∀s ∈ p|s.type = op ⇒ s.succ.type = {cs} - An object-property step must be followed by a
concept-step.

• ∀s ∈ p|s.type = cs ∧ s 6= fs ⇒ s.prev.type = op - The previous step of a concept-step
must be an object-property step (except the first step).

• ∀s ∈ p|s.type = op ⇒ s.prev.type = cs - The previous step of an object-property step
must be a concept-step.

• ∀s ∈ p|s.type = dp ⇒ s = ls - Only the last step can refer to a datatype-property.

2.2.2 Reuse of Global Types or Elements

If the annotated XML-Schema reuses types or elements (via type or ref properties) and both
the element and the referenced element or type are annotated then the semantics need to be
constructed based on the annotation of the element and the annotation of the referenced ele-
ment. Due to the hierarchical structure of XML this needs to be applied recursively.
Let e be an element with the annotation e.annotation and the XML-Type e.type. Let s be
an annotated sub-element of the XML-Type e.type, then the complete path of s needs to be

2

2.3. Transformation of Annotation Paths to Ontology Concepts 17

constructed by combining the annotation e.annotation and s.annotation. In particular the
combination is achieved by removing the last step of e.annotation and concatenating it with
s.annotation.
As an example we may have an XML-element called DeliveryAddress. It is itself annotated
with the annotation path /Order/deliverTo/Address. It has a type definition address. The ad-
dress type itself contains various elements. One of them is street which is annotated with
/Address/hasStreet. In order to construct the complete semantics of the street element that has
the parent element DeliveryAddress we need to build the path /Order/deliverTo/Address/hasStreet.
This path combination needs to be performed by the schema matching engine. It must be noted
that this path combination adds structural dependencies between the schema and the reference
ontology. Therefore, one XML-Type should only be reused for semantically related entities.

2.3 Transformation of Annotation Paths to Ontology Concepts

In the last section we have defined an annotation path expression as a sequence of steps. In or-
der to specify the semantics of such a path expression it is represented in form of an ontology
concept. This allows concept-level reasoning over the annotated elements in order to assist
the matching of schema elements. The name/URI of such a concept is the corresponding path
expression and can therefore, directly be used as a SAWSDL model-reference. OWL allows to
define concepts with logical expressions in form of restrictions over its individuals. We will
illustrate the generation of concepts for annotation paths with examples for the generation of
concept annotation and datatype annotations.

1 C l a s s : Order/ b i l l T o /Buyer [Mr_Smith]/ hasCountry/Country
2 Equiva lentClasses (
3 ConceptAnnotation and Country and inv
4 (hasCountry) some
5 (Buyer and { Mr_Smith } and inv (b i l l T o) some (Order)
6)
7)

Listing 2.1: Representation of a concept annotation path in OWL

In listing 2.1 the OWL representation of the path /Order/billTo/Buyer[Mr_Smith]/hasCountry/
Country is depicted. It creates a specialization of a country concept. In particular a country
that has an inverse hasCountry object-property to a Buyer. This buyer must be an individual of
the enumerated class {Mr_Smith} and must have an inverse billTo relation to an Order.
Obviously such a translation can be achieved fully automatically by iterating over the steps
of the path. The example in listing 2.1 shows the transformation of a concept annotation
to an ontology concept. It is required to semantically separate concept annotations and
datatype-property annotations. Therefore, concept annotations are subconcepts of the special

18 2 Semantic Annotation

concept ConceptAnnotation. Datatype annotations are subconcepts of the special concept
DataTypePropertyAnnotation. An example for such an annotation is shown in listing 2.2.

1 C l a s s : Order/ b i l l T o /Buyer/hasAddress/Address/hasZipCode
2 Equiva lentClasses (
3 DataTypePropertyAnnotation and Address and hasZipCode some L i t e r a l
4 and inv
5 (hasAddress) some
6 (Buyer and inv (b i l l T o) some (Order)
7)
8)

Listing 2.2: Representation of a datatype annotation path in OWL

The generation of the concepts can be realized by the schema-matching engine. The gener-
ated concepts are only required during the generation of the matching. In general a standard
annotation path as shown in the examples always creates a subconcept of the last concept-
step. Therefore, the inverse of the object properties is used. Annotation paths p that are used
in restrictions p ∈ s.res of some concept-step s always create subconcepts of the corresponding
concept with the URI s.uri. Thus, the object-properties are directly used.

2.4 Validation of Annotations

In the last sections we have defined the structure of an annotation path and have shown how
an annotation path can be transformed to an OWL concept. This does not guarantee that the
generated concepts do not introduce contradictions to the ontology. As an example we may
have a path: /Order/deliverTo/PoBox and the ontology defines that the deliverTo property may
never point to a post office box. When this path is represented as an OWL concept it can never
contain individuals and thus, introduces contradictions to the ontology.
In addition the ontology may contain datatype restrictions that restrict values of datatypes to
specific types such as string or integer. If such restrictions exist in the ontology they must
also exist in the schema. The constraints in the schema must be at least as restrictive as in the
ontology. The considerations above lead to the definition of the consistency of an annotated
schema:

Definition 5. A schema S and a set of annotation paths P are consistent with an ontology O iff:

1. Every annotation path p ∈ P is structurally valid (see definition 4).

2

2.5. Related Work 19

2. Every annotation path p ∈ P is logically valid (can be expressed as a satisfiable OWL-
concept in O).

3. All annotated elements in S are more or equally constraining the values as the corre-
sponding datatype properties in O.

Obviously these requirements can be checked fully automatically: The first check can be
realized on the structural level. Each referenced concept and property must be a concept or
property of the reference ontology and the restrictions from definition 4 must not be violated.
The second check is a typical reasoning task that can be done by any OWL reasoner. Check 3
can be realized by traversing the schema and querying the restrictions from the ontology.

2.5 Related Work

In contrast to the annotation of web resources there is only a small number of related work in
the field of the annotation of XML-Schemas. To the best of our knowledge there is no compara-
ble approach for a formal definition of declarative semantic annotations for XML-Schemas that
allows class-level reasoning over the annotated elements. We see the application of the anno-
tations in the possibility to create more precise schema matchings than traditional approaches
[85]. When a schema matching/mapping can be found transformations can be created that
transform the instance documents on the XML-level [42]. In [10] an annotation method and
tool for RDF-Schemas [7] is presented. It is based on a general work on annotations and
mismatches in [68]. A case-study, where the tool is used is presented in [98]. The idea is to
annotate an RDF-Schema with a reference ontology in order to (semi-automatically) generate
reconciliation rules that transform the instances of the source schema to instance of the refer-
ence ontology and vice-versa. The approach does not directly operate on XML-Schemas, thus
the XML-Schemas and documents need to be transformed to RDF-Schema/RDF first. The
annotation expressions are also represented in form of OWL concepts and are based on path
expressions that can be compared to our annotation path expressions. However, the method
also focuses on the runtime perspective allowing to specify abstract operators that are used to
define data-transformation templates. This allows to solve mismatches directly on the annota-
tion layer that we need to treat on another layer. In contrast our approach can directly be used
for XML-Schemas and focuses on the mapping generation between XML-schemas and not the
generation of lifting/lowering mappings that map instance data to/from ontology instances.
In [4] another approach for the annotation of models is proposed. At first a meta-model that
is expressed in OWL is created for every type of model (Relational database, XML-Schemas,
...) which should be annotated. Afterwards individuals for a specific schema are created. This
means there is a representation of the concrete schema as an instance in the ontology. Anno-
tations are just mappings between the reference ontology and the individuals of the schema.
Therefore, this solution is not based on direct XML-level annotations as proposed by SAWSDL.
In [102] an approach is presented that automatically discovers mappings between XML-

20 2 Semantic Annotation

Schemas and ontologies with the help of a given set of simple correspondences between the
schema and the ontology. It assumes a structural relatedness and the discovered mappings
are expressed in form of rules. Since first order logic rules can only modify instances this
approach is well suited for a lifting approach that transforms XML-data to ontology instances.
In contrast, our method creates ontology concepts that form declarative descriptions which are
a basis to build XML-level transformations without the need of lifting instance data to the on-
tology at runtime. In [50] the differences between ontologies and XML-Schemas are discussed.
The authors propose to model the domain via an ontology and transform this specification
to an XML-Schema or database schema. In [52] a system is proposed that automatically cre-
ates annotations for web service descriptions. It can use a reference ontology but does not
need one. If no reference ontology is provided the ontology is created during the approach.
The provided annotations are basically enhancements of the schema-elements with vocabu-
lary of the ontology. They do not provide a complete declarative description. Nevertheless,
approaches that automatically generate annotations like [102] or [52] can possibly be a basis
for the semi-automatic creation of annotations for our annotation method.

2.6 Conclusion

In this chapter we have proposed a method for the declarative semantic annotation of XML-
Schemas that enhances the semantic expressiveness of SAWSDL-model-references. The anno-
tation method has two representations. On the XML-level there are well-defined annotation
paths that can be added to XML-Schemas by schema designers without deep ontology engi-
neering skills. These annotation paths can automatically be transformed to ontology concepts.
These concepts provide a declarative description of the annotated elements and can be used
for class-level reasoning over schema elements in order to create mappings between XML-
schemas. Such mappings can be used to automatically create scripts that transform instance-
data from one schema to another. It must be noted that our annotation method does not
directly resolve all possible conflicts [69] between the schemas and the reference ontology. For
example if the attribute granularity of the ontology and the schema differs no direct annota-
tion is possible. Only existing concepts in the reference ontology can be used in the annotation
path expressions. We propose to solve such heterogeneities with additional ontology concepts
and explicitly defined transformation templates (see chapter 3). In addition to our annotation
method we have provided mechanisms to check whether the annotations are valid with regard
to the ontology. The proposed annotation method is the basis for the mapping generation in
chapter 3. The chapters 5 and 6 will propose methods for the maintenance of the annotations
when the ontology evolves.

3

Chapter3
XML-Schema Matching and Mapping

The goal of the declarative semantic annotation method from chapter 2 is to describe the se-
mantics of the schema elements in detail in order to allow the creation of schema to schema
mappings based on the semantics of the schema elements. Given an annotated source schema
S and an annotated target schema T we want to find a schema mapping M(S, T) that maps
the nodes from S to the nodes of T.
We will first introduce schema matching/mapping in general and present related work. As a
next step we will present our proposed mapping model and discuss semantic relations between
annotations of the source and target schema in order to find simple and complex matches. Typ-
ically there are mismatches between the source and target schema that need to be resolved in
order to find a mapping. Therefore, we will discuss how different types of mismatches can
be resolved by using the annotation method and the semantic relations between the annota-
tions. Finally we will present our prototype for matching and mapping with the proposed
annotation method. A complementary approach for the mapping of schemas with the help of
ontologies is the transformation of instance documents to ontology instances (lifting) and back
to the target schema (lowering) and thus, to realize the transformation on the ontology layer.
We will finally provide benchmark results between our proposed XML-level transformation
approach and an implementation of the lifting/lowering approach.

3.1 Introduction

A key problem in data-integration is the matching of different schemas. In general schema
matching is not restricted to XML-Schemas. It can be used for any kind of schemas such as
relational schemas, object-oriented schemas, ontologies and many more. It is a broad field of
research with myriads [21, 2, 63, 26, 23, 11, 22, 79] of approaches. Multiple surveys such as
[85], [84] or [92] provide a good overview about the problem and the proposed solutions.
The application of schema matching lies in different fields such as catalog integration, p2p

21

22 3 XML-Schema Matching and Mapping

databases, agent communication, web service integration and many more [92]. The result of
schema matching is a set of correspondences between schema elements [85].
Such correspondences can have very brought semantics like "corresponds" or they can provide
some expression in order to define the relation between the source and target elements in
more detail. These matches are the input for the creation of schema mappings. Depending
on the quality of the matching expression the match result is a first step for a mapping or
it can already be a mapping between the schemas. Such mappings can then be used for
various applications such as the transformations of instance data from the representation of
one schema to the representation of another one or to rewrite queries in order to transparently
query data with regard to one schema that is structured by different schemas [81].

3.1.1 Schema Matching

We will introduce schema matching using a general mapping formalism for schemas as pro-
posed in [85]. Given one source schema S and a target schema T we search for a schema
mapping M. This mapping should map the schema elements according to their real-world se-
mantics. M is a set of mapping elements. Each mapping element is a tuple (S1, T2, expression),
where S1 ⊆ S and S2 ⊆ T. The expression can be an arbitrary expression. When expressions
over scalars are used the expression could for example define that two elements are equiv-
alent (and that thus, the values can directly be mapped) or it can be a function such as the
concatenation of elements or some mathematical expression. But the expressions are not lim-
ited to expressions over scalars. Depending on the types of matched schemas this can also be
part− o f , subsumes or overlaps relations. In this research the overall goal is the generation of
mappings to allow documents transformations. Therefore, we are especially interested in the
creation of mapping elements with scalar expressions.

Schema Matching Approaches

After we have defined the goal of schema matching we can discuss different approaches that
can be used to generate this output. The main problem in standard schema matching is that the
real-world semantics of the schema elements are not defined. Therefore, the algorithms used to
match the schemas can only try to guess the semantics based on different knowledge sources.
Examples are element/attribute names, the structural organization, constraints, instance data
and possibly external sources such as lexicons or thesauri [85, 84, 92].

Match Granularity

There are two different approaches to generate matches: Element-level and structural level
matchers [85]. An element-level matcher matches each element separately, while a structural

3

3.1. Introduction 23

matcher matches structures / substructures. For example an XML-Schema structural matcher
matches a complete subtree at once, while an element-level matcher matches each element
separately, while ignoring the structure.

Match Cardinality

An important point is the characterization of the mapping tuples that a matching method can
provide. The survey in [85] distinguishes between global and local cardinalities. The global
cardinality defines how often an element of the source and target schema can be used in
different mapping elements, while the local cardinality defines how many elements from the
source and target schema can occur in each single mapping element. While in the most general
form of a mapping element (S1,T2,expression) S1 and S2 are sets of nodes and expression can
be any expression, most of the matching solutions impose limitations for S1, S2 and exp.

• 1:1 S1 and S2 contain one distinct element.

• 1:n S1 contains exactly one element, while S2 is a set of elements.

• n:1 S1 is a set of elements while S2 contains exactly one element.

• n:m S1 and S2 are sets.

Composite and Hybrid Matchers

Practical approaches for schema matching typically exploit more than one dimension of a
schema. This can be implemented with hybrid matching algorithms that combine multiple di-
mensions in one algorithm. An alternative and more flexible approach is a composite matcher
[21], [2]. Therefore, multiple matchers are used independently and produce partial results.
Finally the results are aggregated to a final result. One problem here lays in the configura-
tion and parametrization of the aggregation function of the composite matcher because this
parametrization has a big impact on the match quality. A specific parametrization can fit very
well for some schemas and produce unappropriate results for others. This leads to approaches
that do not work with user-defined configuration values. Instead, the parametrization can be
based on adaptive, machine learning approaches. An example for such an approach can be
found in [23].

A general Matching Approach

A flexible matching architecture that uses the idea of a composite matcher is COMA [21]. In a
first step the different schemas are loaded and preprocessed in the system. This preprocessing
includes the transformation of the input schemas to a generic schema model. After that a set of
matchers is used. Each matcher generates a n×m matrix filled with confidence levels, where n

24 3 XML-Schema Matching and Mapping

Matcher
Library

Simple matchers:

•n-gram, Synonym, ...

Hybrid matchers:

•NamePath, TypeName, ...
Reuse-oriented matchers:

Schema Import Match Iteration

Matcher 1

Matcher 2

Matcher 3
Schema S2

Schema S1

Combination
Strategies

Aggregation of matcher-specific results:

•Max, Average, Weighted, Min
Match direction:

•SmallLarge, LargeSmall, Both
Match candidate selection:

User Interaction
(optional)

Matcher execution Combination of
match results

Similarity cube

UserFeedback
S2 S1®

S1 S2®

S2->S1

S1->S2

Mapping

Figure 3.1: Match processing in COMA [21]

and m denote the number of elements in the source and target schema. The confidence levels
express the degree of similarity between the matched elements. The result of the matching
phase is a n × m× a cube, where a is the number of used match algorithms. In a final step
the match results are aggregated and combined to a mapping. The overall process is shown
graphically in figure 3.1.

3.1.2 Complex Matches

The majority of matching approaches only support the generation of mapping elements with
a local cardinality of 1:1 and a corresponds-expression [85]. While in many cases this is already
useful a system should also support non 1:1 matches and arbitrary functions. Otherwise no
complete mapping can be generated. We will now define the matching space for 1:1 and n:m
matches in order to discuss the different complexity.

Matching Space

Analogues to [21] and its successor [2] we assume that some matching algorithm can produce
a |S| × |T| matrix, where S is the source- and T is the target schema. Each value in the matrix is
a confidence value between a schema element of the source and a schema element of the target
schema. Obviously this method only allows the detection of a general corresponds relation
and not a function. Otherwise we would have a cube with the dimensions |S| × |T| × | f |,
where f is a set of functions. So already the addition of more precise matching expressions
leads to a much greater matching-space. In addition extra knowledge is required to judge
the confidence value for the application of functions. This already big search-space becomes
even much bigger, when local non 1:1 cardinalities need to be supported. The search-space for
local n:m cardinalities is |℘(S)| × |℘(T)| × | f |. Because any subset of elements from the source
schema can be matched with any subset of elements of the target schema. Obviously an
exhaustive search over this search-space is already unfeasible. In addition it gets even worse,
if we do not limit the expressions to exactly one expression, but to a combination of different

3

3.1. Introduction 25

expressions. In this case the search-space gets infinite. As a conclusion we can state that even
the creation of 1:1 mappings in a standard schema matching case is problematic because the
matching of the elements is based on similarities of the structures or the similarity of element
names which does not necessarily also mean that they have the same semantics. Composite
matchers can provide better matches by exploiting multiple dimensions of the schemas. When
it comes to n:m matches the potential search space explodes because now powersets need to
be matched with powersets. Especially in this case support for matching expressions other
than "corresponds to" becomes essential to construct a useful mapping. Unfortunately, the
support for arbitrary function results in an even much bigger search-space. Therefore, methods
that support n:m match cardinalities need additional knowledge and are typically based on
heuristics to limit the search-space. Non 1:1 matches with matching expressions other than
corresponds are also considered as complex matches in this research.

Matching Approaches for Complex Matches

As discussed in the last section the discovery of complex schema matches is much harder than
the discovery of standard 1:1 matches. In order to detect such matches additional knowledge
is required. As a consequence there are only a few approaches that can deal with complex
matches. The DCM framework [39] is not used for schema to schema- but for holistic schema
matching. Such an approach, where multiple schemas are matched at once has the advantage
that the matching of more schemas also provides more knowledge about the domain. The
basic idea is that n:m matches can be found by positive and negative correlation mining of
the input schemas. For example if it can be discovered that the attribute name does never
occur together with the two attributes f irstname and lastname (which both typically occur
together) it is likely that f irstname and lastname can be matched with name. The mapping
expression is always semantic equivalence. Thus, no lexical functions such as concatenate are
supported. At least the result of the matching can be an input for a mapping approach where
this information needs to be added manually.
The iMAP System [20] can also discover complex matches. The system is instance based. Thus,
the attribute values of instance documents are used for matching. This is realized by multiple
searches where each searcher is capable to detect certain kinds of matches. For example the
numeric matcher can discover matches that are based on numerical formulas by exploiting
the similarity of value distributions. This matcher can for example establish matches such
as price ∗ quantity ∗ (1 + f ee − rate). Other searchers are schema mismatch searchers, unit
conversion searchers and a date-searcher. In contrast to the DCM system iMAP can also return
the expression that is needed to map the elements. Nevertheless, it is a semi-automatic task,
where the user is assisted by the system to create the final schema mapping. Obviously only
matches can be generated that fall into the categories of one of the searchers. In contrast to the
previous instance based examples the work in [87] does not use instance-data. Instead it oper-
ates on so-called mini taxonomies, which are generated automatically by mining a large set of
schemas of the domain. In a first step simple 1:1 matches are generated. Whenever non-leaf

26 3 XML-Schema Matching and Mapping

nodes are matched in the 1:1 matching approach, they are candidates for n:m matches. The
existence of such a n:m match is then verified in a next step which uses external knowledge in
form of the mini-taxonomies to match the nodes. If a match based on a mini-taxonomy can
be established, then the existence of an n:m match is considered as validated. This system can
propose n:m matches but it does not return the specific matching expression.
The work in [28] also uses instance-data to establish a schema mapping. It additionally uses
data-frames and domain ontology snippets in order to generate complex schema mappings.
A data frame represents the essential properties of data items. In addition to an abstract data-
model it also provides information on how to classify instance data. This can for example be
realized by regular expressions or by value-lists. Thus, a data-frame can classify instance data
to be data of some specific data-frame. Domain ontology snippets describe small aggregates
of information. For example an ontology snippet for an address could state that an address
consists of the attribute street, city and zip. Finally, data-frames, ontology snippets and the
usage of instance data provide additional knowledge to generate complex mappings.

Approach Method and Source of Information Mapping Exp.
DCM Framework [39] holistic schema matching/correlation

mining
no

iMAP System [20] instance based, specific searchers yes
Complex schema match discov-
ery and validation through col-
laboration [87]

mini taxonomies, generated by mining
a large set of schemas of the domain

no

Automatic direct and indirect
schema mapping [28]

instances, data-frames and domain on-
tology snippets

yes

Table 3.1: Matching Approaches for Complex Matches

We have summarized the different approaches for the generation of complex schema
matches in table 3.1. The table compares the approaches based on the dimensions method
and source of information and the possibility to automatically generate complex matching ex-
pressions. As a conclusion we can state that complex matches require additional knowledge.
The proposed systems can generate some kind of mappings but they either rely on instance
data or they do not provide a possibility to generate a mapping expression. Even if they gen-
erate a mapping expression this is limited to certain types of expressions and it is only a guess,
which needs to be validated by a user.

3.1.3 Matching Approaches for XML-Schema

Most of the schema matching methods use a generic internal representation in form of schema
graphs or trees. Any type of schema which can be transformed to this representation can
be matched with those approaches. In addition to these general approaches also numerous
approaches that concentrate on XML-Schema were developed. The PORSCHE [88] system

3

3.2. Annotation based XML-Schema Matching 27

takes numerous source XML-Schemas as inputs and generates a mediated schema, as well
as mappings for each source schema to the mediated schema. ASMADE [91, 90] presents a
schema matching and mapping approach that is based on the constraints of the source and
target XML-Schemas. Correspondences that are detected by some other matching approach
are filtered by using the constraints of the XML-Schemas. In [41] a neural-network based semi-
supervised matching approach for XML-Schemas is presented. It learns a synthetic similarity
measure that is based on numerous existing similarity measures. The work in [1] classifies,
reviews and experimentally compares different methods for the computation of similarity of
XML-schemas. Their findings include that it is not sufficient to use only one measurement.
Instead, multiple measurements should be combined to provide good matches. In [61] a com-
plete matching system is described that generates 1:1 mappings based on name similarity, node
similarity, and structural similarity. In contrast to standard matching systems it is optimized
for XML-Schemas.

3.2 Annotation based XML-Schema Matching

We have discussed the general problem of schema matching in the last sections. One main
problem of general schema matching is that the semantic of the schema elements is not ex-
plicitly defined and thus, needs to be approximated by using various dimensions of a schema.
In case of schemas that are semantically annotated with our proposed annotation method the
meaning of the elements is explicitly defined. Additional dimensions of the schema only need
to be exploited in order to comply with the constraints of the schema. While this makes schema
mapping much easier for 1:1 matches, complex matches still need additional knowledge. We
will present our proposed mapping model and propose methods for the detection of 1:1 and
n:m matching elements for annotated XML-Schemas in the next sections.

3.2.1 Schema Mapping Model

The goal of schema matching is to create a schema mapping between a source schema S and
a target schema T. Since XML schema allows the reuse of types and elements (see section
2.2.2) the schema mapping should not be defined on the plain input schemas. Instead, we
use an unfolded representation for the schemas which we call an expanded schema tree. An
expanded schema tree is created by replacing each node that references another node by type-
or ref - references with its definition until no further replacement is possible. The schema
mapping M(S, T) consists of mapping elements. Mapping elements can be simple-mapping
elements, where the elements directly match (copy semantics) or they can be complex mapping
elements that map sets of nodes from the expanded source schema tree S with sets of nodes
from the expanded target schema tree T. Those mappings require an expression that defines

28 3 XML-Schema Matching and Mapping

SourceSchemaTree TargetSchemaTree

-position

-minOccurs

-maxOccurs

-type

-xmltype

SchemaNode

SourceNode TargetNode

-path

-concept

-type

Annotation

-ConfidenceValue

SimpleMapping

-ConfidenceValue

-exp

-ip

ComplexMapping

1

0..1

*

1 1

*

1

*

*

1

*

1

*

1..*

1

0..1

1..*

*

hasRoothasRoot

TargetAnnotationSourceAnnotation

parentOf

Figure 3.2: A Meta-Model of the proposed XML-Schema mapping approach

the complex mapping relation. A meta-model of the proposed schema mapping formalism is
depicted in figure 3.2.

3.2.2 Semantic Relations between Annotations for Simple Matches

In [21] local 1:1 matches are realized by multiple matching algorithms, where each algorithm
fills a |S| × |T| matrix with confidence values. We will now show how such a matcher that
exploits the semantic relations between the annotations can be realized using our annotation
method. Thus, obviously a node s from the source schema and a node t from the target schema
will get a maximum confidence value when the annotation concept of the annotation paths s.a
and t.a are equivalent according to the reference ontology. If they are not equivalent but the
concept of the annotation of the source node is a subclass of the concept of the annotation
of the target node also a high confidence value can be returned. Because semantically any
instance of a subconcept is also an instance of the superconcept. However, in this case it is

3

3.2. Annotation based XML-Schema Matching 29

likely that multiple subconcepts are matched with a common superconcept. It is therefore,
desirable to use the closest subconcept for the match. The closest subconcept is defined by
the hierarchal distance between the source and target annotation concept. While a match from
a subconcept to a superconcept is always possible this does not hold for the opposite direc-
tion. Nevertheless, a match from a super-concept to a subconcept can also be correct but this
depends on the matching situation. Thus, the confidence level of a superconcept to subcon-
cept match must be very low because it requires user-intervention for the mapping generation.
Another type of such a non-strict match is the match between concepts that have the same
parent. For example there is a source annotation /BusinessAddress/hasStreet and a target anno-
tation /PrivateAddress/hasStreet/, BusinessAddress and PrivateAddress are subconcepts of address.
This means they do not match perfectly but as long as PrivateAddress and BusinessAddress are
not defined to be disjoint they are at least semantically related. Therefore, in some situations
this match can be a valid match.
After the basic semantic relations between annotation paths are introduced, we can define how
those relations can be used for a matcher that operates on the semantic annotations. The gen-
eral idea is to produce a n×m matrix filled with confidence values as used in [21]. This allows
to combine a matcher that operates purely on the semantic annotations with additional match-
ers that operate on the structure or on constraints. In order to produce the n×m matrix we use
a semantic matcher. The matcher gets a source node s and a target node t and the enhanced
reference ontology O′ as input and returns a value between zero for no correspondence and
one for equivalence. The matcher is defined as:

sm(s, t, O′) =

1 ∗ α if e = semEqual(s.a, t.a, O′)
1 ∗ β ∗ / 1

ConceptDistance(s.a,t.a,O′) else if isSubConcept(s.a, t.a, O′)
1 ∗ γ ∗ / 1

ConceptDistance(s.a,t.a,O′) else if isSubConcept(t.a, s.a, O′)
1 ∗ δ ∗ / 1

ConceptDistance(s.a,t.a,O′) else if hasSameParent(s.a, t.a, O′)
0 else

The enhanced reference ontology O′ is the reference ontology where all annotation con-
cepts from the source and the target schema are included according to the description in
section 2.3. The helper function semEqual(s.a, t.a, O′) gets two annotation paths and the refer-
ence ontology as input and returns true, if the annotation concepts are equivalent, otherwise
f alse. The function isSubConcept(s.a, t.a, O′) returns true if the source annotation concept is an
equivalent- or subconcept of the target-annotation concept. The parameters α, β, γ, δ are used
to define the maximum confidence level that the specific type of match can return. The helper
function hasSameParent(s.a, t.a, O′) returns true, if the annotation concept of s.a and t.a have
the same parent (except Thing) and are not defined to be disjoint. ConceptDistance(s.a, t.a, O)
returns the hierarchical distance between the concept of s.a and t.a in the isA hierarchy of O′.
It is defined as the minimum number of nodes that needs to be traversed in the hierarchy in
order to reach the annotations concept of s.a from the annotations concept of t.a.
The matching needs to be done separately for concept annotations and datatype annotations,
since otherwise concept annotations may be matched with datatype annotations which does

30 3 XML-Schema Matching and Mapping

not reflect the intended semantics (see section 2.3). In case of datatype annotations (annotation
paths that end with a datatype-property) the method semEqual() must only return true if the
datatype properties are also equivalent. The methods isSubConcept() and hasSameParent()
must only return true, if there is also a corresponding sub-property relation between the
datatype properties.
The matching function operates only on the semantic annotation. In order to achieve good
match results it needs to be combined with an additional matcher that operates on the
constraints of the XML-Schemas. Therefore, we propose to use the given semantic matcher as
one matcher of a composite matcher.
Since the given matcher operates only on the semantic annotations the construction of the
n × m matrix with confidence values does actually not need n × m calls to the matcher. It
is sufficient to only relate each source annotation to each target annotation because multiple
schema elements can have the same annotation. In order to disambiguate matches between
multiple nodes with the same annotation the additional structural matcher can help.

3.2.3 Semantic Relations between Annotations for Complex Matches

In the last section we have presented an approach for the generation of 1:1 matches. In
practical scenarios it turned out, that they are already useful for the majority of cases. One
advantage of such matches is that they are supported by generic matching systems such as
[21] or [2]. Therefore, such systems can easily be extended with a semantic matcher that
operates on the proposed annotation method.
We have shown in section 3.1.2 that all existing systems that allow the creation of complex
matches need to have extra knowledge. The approaches achieve this either by correlation
mining on multiple schemas, by data-mining over instance data or by predefined domain- or
XML-snippets that express the relations between different XML-elements.
Since we are interested in a purely schema level approach the evaluation of instance data is
not an option. Instead, we want to use the annotations to find suitable complex matches. If the
ontology could define how different ontology elements can be transformed, then the source
of knowledge could be the ontology itself. Unfortunately, the OWL reference ontology in our
case is limited to description logic reasoning over instances and classes. Complex matching
expressions or templates can therefore, not be defined on the OWL level. In Semantic Web
applications those transformations can be realized with rule languages such as SWRL [78].
Unfortunately, those rules operate on instance data of the ontology. In our schema-level
approach this does not help because instance data is never lifted to the ontology. Therefore,
we propose to solve this problem by using transformation templates that contain the required
knowledge. Those transformation templates have a set of inputs and a set of outputs. Each
element of the inputs and outputs is annotated with the reference ontology.

3

3.2. Annotation based XML-Schema Matching 31

Definition 3.2.1. Transformation Template A transformation template t is a tuple t =
(S, T, exp, IC, CM, ip), where S is a set of inputs, T is a set of outputs, each element e ∈ S ∪ T
has an annotation e.a. The attribute exp is an arbitrary expression that transforms the inputs to
the outputs. IC is a set of XML-level integrity constraints that needs to be met in order to in-
stantiate the template, CM is set of tuples, that define the required context mapping for inputs
and outputs. ip is a boolean value that indicates if the transformation expression is informa-
tion preserving or not. In general a transformation expression exp is information preserving,
if there can exist another expression that allows a mapping in the opposite direction.

The goal of transformation templates is to create complex matching elements:

Definition 3.2.2. Complex Matching Element A complex matching element is a tuple
(SM, TM, exp, ip, cv), where SM is a set of source mappings, TM is a set of target mappings,
exp is an arbitrary expression that transforms the input to the output. Each element in SM
is a tuple (s, i), where s is an element of the source schema and i is an input of exp. Each
element in TM is a tuple (o, t), where t is an element of the target schema and o is an output of
exp. The value cv defines the confidence value (see subsection 3.2.3) of the matching element.
When ip is set to true, then exp is information preserving.

In order to show the requirements for a complex match between a set of nodes from the
source schema and a set of nodes from the target schema that instantiates some transformation
template, we will first introduce the decomposition of an annotation path into its postfix and
context. An example is shown in figure 3.3.

Definition 3.2.3. Postfix and Context of two annotation paths p1, p2. Given an annotation path p1
that consists of n steps and an annotation path p2 that consists of m steps, such that n > m.
The postfix of p1 with regard to p2 (post f ix(p1, p2)) is a sub-path of p1 that consists of the
rightmost m steps of p1. The context of p1 with regard to p2 (context(p1, p2)) is a sub-path of
p1 that consists of the leftmost n−m steps of p1. If the context ends with an object-property,
then the missing element is replaced with the top-concept owl:Thing.

After the general terms have been introduced, we can discuss the required relations be-
tween the source annotations of a schema, a transformation template and the annotations of
the target schema in order to establish a complex matching element. We will first introduce
the problem with an example shown graphically in figure 3.3. Given a source node s with the
annotation s.a=/Order/has/ItemList/contains/Item/has/DollarPrice and a target node t with the an-
notation t.a=/Document/has/ItemList/contains/Item/has/EuroPrice and a transformation template
t = ({in}, {out}, exp, {}, {}, true), where in is annotated with in.a=DollarPrice and out has the
annotation out.a=EuroPrice.

We can show that s.a v in.a. Therefore, s.a can provide data with the correct semantics
for the input of the transformation template. This also means that we can create a new path
p1=Context(s.a,in.a) + out.a with the help of the transformation template. When this path can

32 3 XML-Schema Matching and Mapping

t.a=/Document/has/ItemList/contains/Item/has/EuroPrices.a=/Order/has/ItemList/contains/Item/has/DollarPrice

in.a=DollarPrice out.a=EuroPrice

s.postfix matches in.a

sa.context matches t.context

out.a matches t.postfix

Kontext

Postfix

Figure 3.3: Finding complex matches with annotated transformation templates

be matched with t.a, then a match with the template can be established. In the example this
is obviously the case because p1=/Order/has/ItemList/contains/Item/has/EuroPrice is a subclass of
t.a=/Document/has/ItemList/contains/Item/has/EuroPrice.

When we assume that we do not want to match one source node with one target node but
a set of source nodes S with a set of target nodes T and a set of transformation templates
TEMPL, we would end up producing new paths for each node ∈ S, whenever there is a
match with an input of a template. Those new paths would then need to be matched with
all nodes ∈ T. This gets unfeasible because creating new paths results in high computational
costs for the reasoner. Therefore, we will inspect the required relations in more detail in order
to decompose the problem into sub-problems that can be solved more efficiently.

We have depicted the general idea using the previous example in figure 3.3. The idea
is that instead of creating new paths for each output of a matching template we only need
to proof that: Context(s.a, in.a) v Context(t.a, o.a) ∧ Post f ix(s.a, in.a) v in.a ∧ out.a v
Post f ix(t.a, out.a).

This has the advantage that Context(a, i) and Post f ix(a, i) are only defined on the length
of i. Thus, we only need to create additional concepts for each different length of input for the
source schema and for each different size of output for each target schema. Because practically
many elements of a document have the same context and inputs of transformation templates
typically have a length of 1 to 2. The additional effort of creating new annotation concepts
is strongly limited. Another advantage is that all those additional paths can be created in
advance. Thus, the reasoner can classify them in a preprocessing step.

3

3.2. Annotation based XML-Schema Matching 33

We will now propose and proof that it is sufficient to match the contexts and the source
postfix with the input and the output with the target postfix.

The function length(path) returns the number of steps of path.
Replace(p1, in, out) replaces the postfix of length length(in) with out. The resulting path has
the length length(p1) − length(in) + length(out).

Theorem 3.2.1. Given the annotation paths p1, p2, in, out:
p1 v in ∧ Replace(p1, in, out) v p2 ∧ Replace(p1, in, out) v Thing1

⇔
Post f ix(p1, in) v in ∧
out v Post f ix(p2, out) ∧
Context(p1, in) v Context(p2, out) ∧
Replace(p1, in, out) v Thing

Proof. ⇒
From p1 v in directly follows that Post f ix(p1, in) v in. The reason is that a longer annotation
path a always defines more specialized concepts than a shorter one b. Post f ix(a, b) has the
same size as b. If Post f ix(a, b) 6v b, then a cannot get a subconcept of b by getting more
specialized. Both concepts get unrelated.
From Replace(p1, in, out) v p2 follows, that Post f ix(Replace(p1, in, out), out) v
Post f ix(p2, out). But Post f ix(Replace(p1, in, out), out) is equivalent to out, therefore, out
v Post f ix(p2, out).
Finally from Post f ix(Replace(p1, in, out), out) v Post f ix(p2, out) ∧ Replace(p1, in, out) v p2
follows that Context(p1, in) v Context(p2, out) The reason is that two annotation path a, b,
where a v b get hierarchically incomparable, when they are combined with contexts, where
a.context 6v b.context.

⇐
From Post f ix(p1, in) v in directly follows p1 v in.
From out v Post f ix(p2, out) follows that Post f ix(Replace(p1, in, out), out) v Post f ix(p2, out).
From Context(p1, in) v Context(p2, out) follows that Context(Replace(p1, in, out), out) v
Context(p2, out) because Context(Replace(p1, in, out), out) ⇔ Context(p1, in).
When Post f ix(Replace(p1, in, out), out) v Post f ix(p2, out) ∧ Context(Replace(p1, in, out), out)
v Context(p2, out), then also Replace(p1, in, out) v p2.

1This ensures that the replaced annotation path is logically valid (see section 6.2.1)

34 3 XML-Schema Matching and Mapping

We now use 3.2.1 to specify, when a match between a source and a target schema can be
established with a 1:1 transformation template:

Definition 3.2.4. 1:1 Matching-Template Given a source node s with the annotation s.a
and a target node t with an annotation t.a, and a 1:1 transformation template templ =
({i}, {o}, exp, ICS, {}, true), a matching element based on templ can be created if:

1. Post f ix(s.a, i.a) v in.a

2. o.a v Post f ix(t.a, o.a)

3. Context(s.a, in.a) v Context(t.a, out.a)

4. Replace(s.a, i.a, o.a) v Thing

5. No integrity constraint ∈ ICS is violated by the source and target nodes.

Description: Requirement one to four are a direct consequence of theorem 3.2.1. The addi-
tional check of XML-Level integrity constraints ensures that the transformation template does
not only fit semantically but also structurally.

Example: Given a source node s with the annotation s.a=/order/hasItem/Item/hasPrice/EuroPrice
and a target node t with the annotation t.a=/document/hasItem/Item/hasPrice/Price/DollarPrice
and a transformation template t = ({i}, {o}, exp, {}, {}, true), where i.a = /EuroPrice and
o.a = /DollarPrice, and en empty set of integrity constraints. The expression exp can for
example be defined as {o=i*1.35}
We can establish a match between s and t with the help of the transformation template because
Postfix(s.a,i.a) = EuroPrice is equivalent to i.a and the output of the transformation template
o.a is equivalent to Postfix(t.a,o.a)=DollarPrice. Finally the context of the annotations match
because /order/hasItem/Item/hasPrice/Thing is a subclass of /document/hasItem/Item/hasPrice/Thing.

After we have shown, when a match with a 1:1 template can be established, we will generalize
the match requirements for n:m transformation templates. In case of n:m transformation
templates, there is no direct mapping between the input and output nodes. Therefore, the
required mapping relation for the contexts is defined by the set of context-mapping tuples
CM, where each tuple ∈ CM has the form (in, out), where in references an input element and
out references an output element.

Definition 3.2.5. n:m Matching-Template Given a set of source nodes SN and a set of target
nodes TN and a n:m transformation template templ = (IN, OUT, exp, ICS, CM, true), where
IN is a set of annotated inputs and OUT is a set of annotated outputs of the transformation
expression exp. CM is a non empty set of context mappings. A match between a subset of SN
and a subset of TN with the template templ exists, if:

1. ∀ i ∈ IN ∃ s ∈ SN | Post f ix(s.a, i.a) v i.a

3

3.2. Annotation based XML-Schema Matching 35

2. ∃ o ∈ OUT ∧ ∃ t ∈ TN | o.a v Post f ix(t.a, o.a)

3. ∀ cm ∈ CM ∃ (s ∈ SN ∧ t ∈ TN) | Post f ix(s.a, cm.in.a) v cm.in.a ∧
cm.out.a v Post f ix(t.a, cm.out.a)
⇒ Context(s.a, cm.in.a) v Context(t.a, cm.out.a) ∧ Replace(s.a, cm.in.a, cm.out.a) v Thing

4. No integrity constraint ∈ ICS is violated by the source and target nodes.

Description: A n:m transformation template can only be used, if all preconditions are met.
Those preconditions are, that all inputs can semantically be matched with the postfix of anno-
tations of source nodes. In addition, at least one output must be matched with the postfix of
a target node. This is a direct consequence of theorem 3.2.1. The only additional requirement
is that the defined concept mappings are not violated. This requirement is directly inline with
the definition of the context mapping.

Example: Given a source schema with the element nettoPrice that represents the total
net-price and the element tax that represents the tax-ratio in percent. The target schema has
one element bruttoprice that represents the total-price including the tax-value and an addi-
tional element includedtax that represents the tax-amount that is included in the bruttorpice
element. The corresponding annotations are: nettoPrice.a=/order/hasTotalPrice/nettoPrice,
tax.a=/order/hasTaxRatio/Taxratio, bruttoPrice.a=/order/hasTotalPrice/bruttoPrice, and included-
tax.a=/order/hasTotalPrice/includedTaxAmount.

We now assume to have a transformation template t=({i1,i2},{o1,o2},exp,{},{(i1,o1),(i2,o2)},true),
where i1.a=nettoPrice, i2.a=Taxratio, o1.a=bruttoPrice, and o2.a=includedTaxAmount. The expres-
sion exp can be an expression like: {o1=i1*(1+(i2/100)); o2=i1*(1+(i2/100))-i1}. We can establish
a match because all inputs of the transformation template can be matched with inputs of the
source schema: Postfix(nettoPrice.a,in1) v i1.a and Postfix(tax.a,i2.a) v i2.a. In addition all out-
puts of the transformation template can be matched with nodes from the target schema: o1.a
v Postfix(bruttoPrice.a,o1.a) and o2.a v Postfix(includedtax.a,o2.a). Finally each tuple in the con-
text map {(i1,o1),(i1,o2)} can be matched: Context(nettoPrice.a,i1.a) v Context(bruttoPrice.a,o1.a)
and Context(nettoPrice.a,i1.a) v Context(includedtax.a,o2.a) because /order/hasTotalPrice/Thing is
equivalent to /order/hasTotalPrice/Thing.

A Note on Datatype Annotations

A datatype annotation is an annotation that ends with a datatype-property. The annotation
method requires that an annotation path must always start with a concept. This has con-
sequences for general transformation templates that define transformations regardless of the
context. For example in order to define a transformation template Euro2Dollar that transforms
data between the datatype properties hasEuroValue and hasDollarvalue the input and output
needs to be annotated with Thing/hasEuroValue and Thing/hasDollarValue. However, in order
to achieve meaningful postfixes and prefixes the Thing-step needs to be removed and the

36 3 XML-Schema Matching and Mapping

matching of postfix and input and postfix and output must be based on sub-property relations
rather than on subclass relations. For datatype annotations that do not start with Thing, the
sub-property relation needs to be checked additionally (see simple matches in section 3.2.2).

Confidence Values of Complex Matches

After the applicability of transformation templates is defined, we can match nodes of a target
schema with complex matches if the described required conditions for the instantiation of a
template are met. The matching criteria from definition 3.2.5 ensures that all found complex
matching elements are able to create some desired output.

In order to weight the found complex matches according to their match quality a con-
fidence value analogue to the simple 1:1 matches is required. In general confidence values
can be interpreted as the probability that some element from the source schema s matches
some element t of the target schema. When a direct match is established the probability is
the direct result of the semantic annotation based matching function (see section 3.2.2). When
a complex 1:1 match is established we therefore, propose to calculate the overall confidence
value matchval of the complex match using a transformation template templ as:

matchval = match(post f ix(s1.a, templ.in.a), in.a) ∗
match(templ.out.a, post f ix(t.a, out.a)) ∗
match(context(s1.a, in.a), context(t.a, out.a)))

In case of 1:n, n:1 or n:m complex matches there is not only one such match but there
are multiple matches for each context mapping tuple. In this case the overall value of a
complex matching element can only be an aggregation (such as average) of the single match
values.

3.2.4 Mapping Workflow

The goal of the matching of the source and target schema is the creation of a directed schema
mapping from the source schema to the target schema. The meta-model for the mapping
formalism is shown in figure 3.2. A schema mapping is basically a set of simple and com-
plex mapping elements. A simple mapping element relates one node of the expanded source
schema tree to one node of the expanded target schema tree. The semantics of such an element
is that data from an element of the source document can directly be copied to a an element
of a target document. Each node of the source and target schema can participate in multiple
simple mapping elements as long as the min- and max occurs restrictions of the nodes are not
violated (global n:m cardinality). A complex schema mapping element relates a set of source
nodes to a set of target nodes with some matching expression.

3

3.2. Annotation based XML-Schema Matching 37

1:1 Simple

Element Level

Matching

Complex

Matching using

transformation

templates

User Review and

Mapping

Generation

Figure 3.4: Schema mapping workflow

In order to create a schema mapping we propose to use the mapping workflow which is de-
picted in figure 3.4.

As already discussed in section 3.1.2 the size of the search space for schema matching with
complex matches gets unfeasible for or an exhaustive search. Therefore, we use two methods
to reduce the search-space. In a first phase 1:1 matches are generated. In the second phase
complex matches are only created for not yet matched target elements. The generation of such
complex matches is directly based on the semantic relations between the source and target
nodes and the existing transformation templates (see section 3.2.3).

In the first phase simple correspondences between schema elements are created using
a composite matcher that consists of a semantic annotation based matcher as proposed in
subsection 3.2.2 and an XML-Schema constraint based matcher. The output of this phase is
a |S| × |T| matrix that relates each source node to each target node. In order to generate a
schema mapping we have the following problem:

Given a |S| × |T| matrix that includes the computed confidence values and a set of nodes S
and T, where each node s ∈ S or ∈ T has a min- and max occurs restriction. We search for
a set M of mapping elements (s, t, cv), where s ∈ S, t ∈ T and cv is the confidence value of
s and t from the confidence matrix. The goal is to find a mapping M, where the sum of all
confidence values of the mapping elements is maximized, and no constraints over the min-
and max-occurs restrictions of the schema nodes are violated.

In the second phase complex matches for target elements that are not yet targets of 1:1
mapping elements or that only participate in mapping elements with confidence values under
some threshold are generated. This can result in multiple complex matches for one specific
set of target nodes. We propose to only use that complex matching element with a maximum
combined confidence level. This is only one possible strategy - other strategies could for
example be to (additionally) minimize the number of template instantiations and to maximize
the number of matched target nodes. All those strategies require experiments on annotated
real-life schemas and data-sets for their evaluation, which is not in the scope of this research.
The user can also define new templates if a match could not be established with the existing
templates from a template library. Such a user-defined template can later automatically be
reused because the inputs and outputs are annotated. Finally a schema mapping candidate
can be generated by adding the complex matches to the set of already generated mapping

38 3 XML-Schema Matching and Mapping

elements. This mapping candidate can then be presented to the user who can still make
modifications.

3.3 Mismatch Resolution

The main goal of the matching and mapping approach is to provide interoperability between
different XML-Schemas. We will now first present an example for a schema mapping that
was established using the proposed annotation and mapping method and then discuss how
different types of mismatches [69] can be resolved.

We suppose to have a business case, where it is required to create a directed mapping
in order to transform order documents from a company that only sells furniture to private
customers to a schema for order documents of some mail-order house that sends any kinds of
goods to any kind of customer. Both partners have agreed on a common business ontology
(depicted in figure 3.5) that describes their domain. In addition both schemas are annotated
using the proposed annotation method. The schemas are heterogenous. The source schema
provides extra XML-elements for the customer- and for the company- address, while the target
schema provides only one element InvolvedParties that contains sub-elements for the address
of the buyer and seller. The source document always uses EURO as currency, while the target
schema only uses prices in USD. Last but not least both schemas use a totally different
structure for the guarantee information. In the source schema the type of guarantee is provided
by an attribute, while in the target schema there is an own schema element for each different
type of guarantee. The automatically generated mapping between both schemas is shown in
figure 3.6. The complete source and target schemas including all annotations can be found in
the appendix 1, 2, and 3. In the next subsections we will discuss, how the different elements
can be mapped.

The work in [69] provides types of mismatches that typically occur between heterogenous
schemas. We will discuss the mismatch resolution based on this classification. The proposed
mismatch types are divided into lossless and lossy mismatches.

3.3.1 Lossless Mismatches

Lossless mismatches are mismatches that can be revolved without loosing information. As a
consequence a bidirectional information preserving mapping is possible.

Naming

The general problem of a naming mismatch is that elements with the same semantics use
different labels in the source and target schema. In the example schemas, an example for a

3

3.3. Mismatch Resolution 39

Class Hierarchy O-Property Hierarchy

D-Property Hierarchy

Figure 3.5: Example reference ontology

naming-mismatch are the elements SellerCompany and SellerCompanyName. The naming mis-
matches can easily be resolved using the proposed annotation and mapping method. The
reason is that the matching is based on the annotations. A mapping can be established if the
annotation concept of the source element is a sub- or equivalent concept of the target annota-
tion concept. In the case of the seller-company this is trivially the case because the annotation
strings are equivalent. Both use the annotation /InvoiceDocument/hasSeller/Seller/hasCompany/-
Company.

Structure Organization

In general a structural organization mismatch means that the same content is structured dif-
ferently. An example for this are the different representations of the address-data of buyer and

40 3 XML-Schema Matching and Mapping

invoice

BuyerInfo

Firstname

LastName

AddressType

Address

Street

zip

City

Country

SelllerInfo

SellerCompany

AddressType

Address

Street

zip

City

Country

Products Product

1 ¥..

FurnitureID

FurnitureDescription

quantity

singleNettopriceEuro

GuaranteeInfo

attributes

Duration

Type

invoiceMetaData

attributes

InvoiceNumber

InvoiceDate

invoice

attributes

InvoiceNumber

InvoiceDate

InvolvedParties

BuyerFirstAndLastName

SellerCompanyName

StreetOfBuyer

zipOfBuyer

CityOfBuyer

CountryOfBuyer

StreetOfSeller

zipOfSeller

CityOfSeller

CountryOfSeller

InvoiceItem

1 ¥..

attributes

ProductId

ProductDescription

quantity

singleNettopriceUSD

GoldGuarenteeDuration

PlatinGuarenteeDuration

Name2Fullname

Euro2USD

Generic2

Guarentee

Figure 3.6: Example mapping

seller. The source schema uses two different elements BuyerInfo and SellerInfo, with nested
elements for the corresponding attributes, while the target schema has a flat form with a se-
quence of elements.
Nevertheless, 1:1 matches between the elements can be achieved by using the semantic an-
notations. In this case the annotation path for the buyer elements are not equivalent (using
privateBuyer instead of Buyer for the annotation) in the source and target schema. A directed
mapping is still possible because the annotation concepts of the source schema are subconcepts
of the annotation concepts of the target schema. Therefore, the example shows a structure or-
ganization mismatch that occurs together with an abstraction mismatch.

Attribute Granularity

In this case the same information is represented by a different number of attributes in the
source and target schema. An example is the representation of FirstName and LastName in
the source schema and the usage of one combined element BuyerFirstAndLastName in the tar-
get schema. The reference ontology in the example provides a specific property hasFullname
and the distinct properties hasFirstname and hasLastname. As a consequence the elements are
annotated differently. A one to one match is not possible. In order to solve this issue a
transformation template needs to exist in the transformation template library. In our case, we

3

3.3. Mismatch Resolution 41

assume there is a transformation template of the form: FirstnameLastname2Fullname = ({in1,
in2 }, out1, exp, {}, true), with the annotations in1.a=/Thing/hasFirstname, in2.a/Thing/hasLastname
and out1.a=Thing/Fullname. In order to establish a match using this transformation template
we need to show that a match based on the annotation of the source and target schema can
be established. The source schema contains the elements FirstName with the annotation /In-
voiceDocument/hasBuyer/PrivateBuyer/hasFirstname/ and LastName with the annotation /Invoice-
Document/hasBuyer/PrivateBuyer/hasLastName. The target schema contains the element Buyer-
FirstAndLastName with the annotation /InvoiceDocument/hasBuyer/Buyer/hasFullName/. Since
the context /InvoiceDocument/hasBuyer/PrivateBuyer matches /InvoiceDocument/hasBuyer/Buyer/
(subclass match) and the prefixes matches as well, a complex matching element of the form
({(s1, in1), (s2, in2)}, {(out1, t1)}, exp, true, cv) can be created.

Subclass-Attribute and Schema-Instance

In case of a Subclass-Attribute mismatch in the one schema a generic class is used with a
specific attribute that defines the actual type, while in the other schema specific types are
used. In case of the schema instance problem, data holds schema information (for example
expressed as an enumeration of values in the one schema that corresponds to different types
in the other schema) in general.

Our proposed approach operates only on the schema level and for this kind of problem
the actual instance data needs to be evaluated. Only transformation expressions can have
access to instance data. In the example source schema, there is an element GuaranteeInfo with
the attributes Duration and Type. The type can either be Gold or Platin. In the target schema two
different elements (GoldGuarenteeDuration and PlatinGuarenteeDuration) are used to express
how long the specific guarantee type is granted. As a consequence different annotations
are used in the source and target schema. In the source schema the attribute Duration is
annotated with /InvoiceDocument/declares/GenericGuarantee/hasDuration and the attribute type
is annotated with /InvoiceDocument/declares/GenericGuarantee/hasType. In the target schema
GoldGuarenteeDuration is annotated with /InvoiceDocument/declares/GoldGuarentee/hasDuration
and the element PlatinGuarenteeDuration has the annotation /InvoiceDocument/declares/Platin-
Guarentee/hasDuration.
Obviously those elements do not match directly. Instead, a transformation tem-
plate of the form GenericToSpecificGuarentee = ({in1, in2 }, out1, exp, {}, true),
where in1.a=GenericGuarantee/hasDuration and in2.a=GenericGuarantee/hasType and
out1.a=/GoldGuarentee/hasDuration and out2.1=/PlatinGuarentee/hasDuration exists. This tem-
plate allows the creation of a complex mapping element.

42 3 XML-Schema Matching and Mapping

Encoding

In this case different format of data or unit of measure are used in the source and target
schema. We propose that elements with different encoding have non (strongly) matching
annotations. Thus, a mapping is not directly possible. The resolution lies in the automatic
match with transformation templates that define how the mapping can be realized. In the
example the price is denoted in Euro in the source schema and denoted in USD in the target
schema. A transformation template of the form Euro2USD = ({in1,}, out1, exp, {}, true), where
in1.a=Thing/hasEuroValue, out1.a=Thing/hasUSDValue is used to solve this issue.

3.3.2 Lossy Mismatches

In case of lossy mismatches it is not possible to generate a bidirectional information preserving
mapping.

Content

Different content is denoted by the same concept. This mismatch can be detected because in
this case both elements must have different annotations with regard to the reference ontology.
A mapping can be generated if a corresponding transformation template exists.

Coverage

The absence of information. The annotations clarify the semantics of the schema elements.
This also addresses the detection of non mappable elements due to missing elements.

Precision

Precision mismatches allow either no mapping or if a transformation template can be found
only the production of a directed mapping from the schema with more precise elements to the
schema with less precise elements.

Abstraction

Level of specialization refinement of the information. This can be detected with the help of the
annotations. It typically results in unidirectional mappings. In the example we could match
a private-buyer with a buyer. The opposite direction is not (always) possible. Another example
for an abstraction mismatch are aggregations. In this case a transformation template can help

3

3.3. Mismatch Resolution 43

to aggregate the values. This also results in a directed mapping. We will provide an example
for such a template.

Given the template ItemsToTotalPrice = ({Itemlist, /ItemList/has/Item/hasPrice}, TotalPrice, exp,
IC, false). The template is stated to be capable to calculate the TotalPrice, given an Itemlist
and the prices of items. There is a set of integrity constraints for that expression and the ex-
pression is stated to be not information preserving (it cannot be reverted). When we assume
to have two schema elements s1 and s2 of a source schema, where s1.a=Order/has/Itemlist,
s2.a=Order/has/Itemlist/hasItem/hasPrice and an annotation t.a=Order/has/TotalPrice of some el-
ement t of a target schema, we can generate a complex mapping element of the form
({(s1, in1), (s2, in2)}, {(out1, t1)}, exp, f alse, cv) based on the transformation template.

3.3.3 Discussion

The proposed annotation and mapping method can be used to establish simple and complex
mappings between different schemas. The annotation path expression do not need to match
syntactically - instead, a semantic match that uses the class and property hierarchy of the ref-
erence ontology is used. The structure and naming of elements does not matter to find simple
matches based on the annotations.
In order to allow complex mappings a library of transformation templates is required that
defines how different concepts can be matched using a complex matching expression. Those
transformation templates can be defined generally (in the example the Euro2Dollar transfor-
mation template can transform Euro to Dollar in all contexts) or including a context. The
resolution of some mismatches such as schema instance and sub-class attribute mismatches
needs to deal with instance data. The only elements that can have access to instance data in
our schema level approach are the XML-based transformation templates. This has the draw-
back that in order to create annotations for those elements the reference ontology needs to
contain concepts for the different representations, (for example the GenericGuarantee in the
example ontology) and transformation templates must be created that allow transformations
between the different representations.
In a lifting/lowering approach the addition of such concepts to the reference ontology is not
required since the lifting scripts/rules can encapsulate the knowledge and actively transform
the instance data to a common representation. An alternative annotation approach that adds
runtime knowledge to the annotations is used in [98]. In this case the annotations provide
declarative knowledge on how the data can be transformed to instances of the reference on-
tology at runtime. While the direct application of this idea is not an option in our case, this
idea can potentially be used to automatically generate transformation templates and additional
concepts by using such enhanced annotations.

44 3 XML-Schema Matching and Mapping

3.4 Proof of Concept Implementation

As described in section 3.2 our annotation method can be used to enhance traditional matching
approaches with the semantics of schema elements. Preliminary tests have shown that we can
even achieve good matching results when the semantic matcher is used as the only matching
criteria. Therefore, we have implemented a prototype that mainly operates on the semantic
similarity. Additional similarity measures are only incorporated to distinguish ambiguous
annotations. Our implementation operates in three phases. In the first phase the semantic
annotations are matched. This is an optimization step that avoids matching the same annota-
tions twice. In a second phase the results from the annotation mapping phase is used to map
the nodes of the source and target schemas. Finally the output is generated. The prototype is
implemented using Java in combination with the OWL API2 and the Pellet3 OWL-DL reasoner.
We will briefly describe the implementation here and refer the interested reader to [96] and
[95] for details. The implementation operates in three phases as shown in figure 3.7. We will
describe the phases in the next subsections.

Annotation

Matching

Node

Mapping

Output

Generation

Figure 3.7: Phases of the proof of concept implementation

3.4.1 Annotation Matching Phase

In the annotation matching phase the source and target schemas are first converted to ex-
panded schema trees. An expanded schema tree is a schema where every element that refer-
ences another type or element is expanded with the definition of the referenced type/element
unless no further expansion is possible. The annotations are rewritten according to the rules in
section 2.2.2. Finally all annotations are extracted from the expanded source and target schema
trees. The annotations are then transformed to ontology concepts as described in section 2.3
and are then added to the reference ontology that we then call the extended reference ontology.
In a next step the semantic similarity between each source and target annotation is computed
as described in section 3.2.2. This step only produces local 1:1 matches without a matching
expression. Therefore, in a next step the annotations of all elements of a library of transforma-
tion templates are used to create matches for the not yet matched target annotations.
In contrast to the proposed general transformation templates that allow n:m mappings the
mapping in the implementation is limited to local 1:1 and local n:1 mappings because local
n:m and local 1:n are not supported by Altova MapForce4 which is later used to process the

2http://owlapi.sourceforge.net/
3http://clarkparsia.com/pellet/
4http://www.altova.com/de/mapforce.html

3

3.4. Proof of Concept Implementation 45

mappings. However, this limitation can practically be solved by the usage of multiple 1:n
mappings. The prototype can create matches with existing transformation templates. Such
templates can directly be used to create as a matching element or they can be combined to
produce a composite matching element. A composite matching element is created by com-
posing multiple transformation templates in order to fulfill some transformation requirement.
Such composite matching elements are generated automatically during the matching task by
using a simple iterative deepening search algorithm. Finally the user can define additional
matching templates that are automatically reused for future matches. By now XML-Level in-
tegrity constraints of transformation templates are ignored. Finally the result of the annotation
matching phase is a set of simple and complex mapping elements.

Figure 3.8: Screenshot of the semantic matching phase of the prototype

A screen-shot of the optional user interaction for the mapping of the example schemas
from section 3.3 is shown in figure 3.8. Depending on the type of semantic match the matches
are shown in different colors. We use green for equivalent matches, blue for subclass to super-
class matches, red-brown for matches using transformation templates, and red for super-class
matches. In this phase the user has also the chance to modify the mapping and to create
additional transformation templates. When a new template is created the annotation match-
ing phase is restarted in order to generate a matching that includes the new transformation
template.

46 3 XML-Schema Matching and Mapping

3.4.2 Node Mapping Phase

After the possible matches for the annotations haven been discovered they are used to
map the nodes of the expanded schema trees. Given an expanded schema tree S of the
source schema and an expanded schema tree T of the target schema and a set of map-
pings M we search for a mapping of nodes MN that map each annotated node ∈ T to
an annotated node ∈ S. For each mapping m ∈ M there exists a set of nodes ∈ S where
node.annotation = m.sourceAnnotation called sourceCandidates of m and a set of nodes ∈
T where node.annotation = m.targetAnnotation called targetCandidates. Depending on the
sets sourceCandidates and targetCandidates there are different cardinalities for the mapping of
nodes:

• 1:1: |targetCandidates| = 1 and |sourceCandidates| = 1

• 1:n: |targetCandidates| = 1 and |sourceCandidates| > 1

• n:1: |targetCandidates| > 1 and |sourceCandidates| = 1

• n:m |targetCandidates| > 1 and |sourceCandidates| > 1

1:1 Mapping:

The 1:1 mapping is the most common case because a schema typically does not contain dif-
ferent nodes with the same semantics. In this case the mapping of nodes is straight for-
ward: Given an annotation mapping M (sourceAnnotation, targetAnnotation) with a 1:1 rela-
tion between sourceCandidates and targetCandidates. SourceNode is the one and only node ∈
sourceCandidates and targetNode is the one and only node ∈ targetCandidates. Thus, a node
mapping n = (sourceNode,targetNode) is created.

1:n and n:1 Mapping:

Nevertheless, there are situations where other cardinalities can occur. Since the semantics of
the nodes in non 1:1 relations are basically equivalent, other information needs to be used to
find a suitable mapping of the nodes. The relevant information from the XML-Schema that we
use are: Cardinality restrictions and the distance between the nodes in the source and target
schemas.
One common cause for a 1:n mapping are different cardinality restrictions on XML-elements in
the source and target schema. In the 1:n case there is one single sourceNode ∈ sourceCandidates
and there is a set of target-nodes in targetCandidates. The cardinality of the source node
sourceNode.cardinality is bigger or equal to the sum of the cardinality restriction of each
targetNode ∈ targetCandidates. In this case we can map the first n values of the sourceNode to
the first targetNode which has the max cardinality n. The next m values of the sourceNode can
be mapped to the second targetNode which has the max cardinality m. This can be repeated

3

3.5. Performance Evaluation 47

until all (potential) values are distributed. Of course this is only a heuristical solution which
will produce a valid mapping but user-intervention is required to confirm this solution since
also any other mapping would semantically also be possible. In the case of a n:1 mapping the
opposite scenario happens and distinct elements are mapped to one repeatable element.

n:m Mapping:

In case of n:m relations both sourceCandidates and targetCandidates are sets with more than
one element. To find node mappings we exploit the location of the nodes in the source and tar-
get schema with the assumption that nodes that are semantically related are typically grouped
together in a schema. Therefore, we use the following mapping strategy for n:m relations:
A node sn ∈ sourceCandidates is mapped to a node tn ∈ targetCandidates if the nearest neigh-
bor node of sn, called nns, that is already mapped to a node tnd ∈ T, and the target node
tn has the minimum distance to tnd in T. The minimum distance is defined as the number
of XML-nodes that need to be traversed along the shortest path between two nodes in the
expanded schema tree.

3.4.3 Output Generation

Our proof of concept implementation exports the discovered mappings in form of Altova Map-
Force5 project files. The user can therefore, review and - if required - change the discovered
mapping with the graphical MapForce tool. Finally an XSLT Script can be generated using
MapForce. This Script can then be used to transform instance documents.
A screen-shot of the fully-automatically generated output of the mapping example from sec-
tion 3.3 using our prototype is shown in figure 3.9. In contrast to the mapping from figure
3.6 the generated mapping uses two different transformations to generate the guarantee ele-
ments in the target schema. Therefore, it uses a global 1:n cardinality to simulate the local 1:n
cardinality which is not supported by MapForce.

3.5 Performance Evaluation

In the previous sections we have shown how the proposed declarative semantic annotations
can be used to generate mappings between different XML-Schemas. We have also discussed
how mismatches can be resolved using the annotations and transformation templates and have
presented a prototype implementation of a schema mapping solution that operates on the pro-
posed declarative semantic annotations. A complementary approach for semantic annotation
based document transformation is to annotate the schemas with references to lifting scripts,

5http://www.altova.com/de/mapforce.html

48 3 XML-Schema Matching and Mapping

/InvoiceDocument/hasProductList/ProductList/hasItem/ListItem

/InvoiceDocu

/InvoiceDocument/hasSeller/Seller/hasContact/PostalAddress/hasCity

/InvoiceDocument/hasSeller/Seller/hasContact/PostalAddress/hasZip

/InvoiceDocument/hasBuyer/Buyer/hasContact/PostalAddress/hasCountry

/InvoiceDocument/hasSeller/Seller/hasContact/PostalAddress/hasStreet

/InvoiceDocument/hasBuyer/Buyer/hasContact/PostalAddress/hasCity

/InvoiceDocument/hasBuyer/Buyer/hasContact/PostalAddress/hasStreet

/InvoiceDocument/hasSeller/Seller/hasContact/PostalAddress/hasCountry

/InvoiceDocum

/InvoiceDocument/hasSeller/Seller/hasCompany/Company

/InvoiceDocum

/InvoiceDocument/hasBuyer/Buyer/hasContact/PostalAddress/hasZip

/In
vo

iceD
o
cu

m
en

t/d
ecl

/InvoiceDocument/

/InvoiceDocument/hasProductList/ProductList/hasItem/ListItem/hasProduct/Product/ha

/In
voiceDocument/d

ec

/InvoiceDocument/hasProductList/ProductList/hasItem/ListItem/hasQuantity

/In
vo

iceD
o
cu

m
en

t/d
ecl

/InvoiceDocument/hasProductList/ProductList/hasItem/ListItem/hasProduct/Product/ha

/In
vo

ic
eD

ocu
m

en
t/d

ec
la

re
s/

/In
voic

eDocum
ent/h

asID

/In
voic

eD
ocum

ent/h
asDate

/InvoiceDocument
/InvoiceDocument/hasInvolvedParty/BusinessParty

/InvoiceDocume

/InvoiceDocume
/InvoiceDocument/ha

Generic2Platin

T_HasDuration

T_HasType

T_HasPlatinDuration

Target-Solution2

File: Target%Solution2.xml

invoice

InvoiceNumber

InvoiceDate

InvolvedParties

BuyerFirstAndLastName

SellerCompanyName

StreetOfBuyer

zipOfBuyer

CityOfBuyer

CountryOfBuyer

StreetOfSeller

zipOfSeller

CityOfSeller

CountryOfSeller

InvoiceItem

ProductId

ProductDescription

quantity

singleNettopriceUSD

GoldGuarenteeDuration

PlatinGuarenteeDuration

Source-Solution1

File: Source%Solution1.xml

invoice

BuyerInfo

Firstname

LastName

Address

Street

zip

City

Country

SelllerInfo

SellerCompany

Address

Street

zip

City

Country

Products

Product

FurnitureID

FurnitureDescription

quantity

singleNettopriceEuro

GuaranteeInfo

Duration

Type

invoiceMetaData

InvoiceNumber

InvoiceDate

FirstNameLastName2FullName

T_HasFirstname

T_HasLastName

T_HasFullName

Generic2Gold

T_HasDuration

T_HasType

T_HasGoldDuration

Euro2Dollar

T_HasEuroValue T_HasDollarValue

Figure 3.9: Generated output opened in Altova MapForce

that transform instance data to ontology instances (lifting) and back to XML-Documents (low-
ering). In this section we will evaluate the performance of our prototype implementation
against a typical lifting and lowering approach. We will first describe the implementation of
the lifting/lowering approach and then provide benchmark results for both approaches.

3.5.1 Lifting/Lowering Implementation

As proposed in SAWSDL an XML-Schema can be annotated with lifting and lowering scripts.
Document transformations can be realized by using the lifting scripts that are referenced from
the source schema to lift the instance data to the ontology and the lowering scripts that are
referenced from the target schema to lower the data to the target XML representation. The
lifting/lowering approach is depicted in figure 1.1. The lifting of the instance data allows
full reasoning over the instance data. This can just be ontological reasoning with a standard
reasoner as well as the application of rules. We have implemented this approach using the Jena
Framework6 and the pellet reasoner7. Our implementation is a straight forward application
of standard Semantic Web technologies and frameworks and basically performs the following
steps:

1. Each document is transformed to RDF [66] using a lifting XSLT [15] script.

6http://incubator.apache.org/jena/
7http://clarkparsia.com/pellet/

3

3.5. Performance Evaluation 49

2. The RDF data is added to the reference ontology.

3. An OWL-DL reasoner (pellet) is used to classify the reference ontology including the
instance data.

4. JENA rules are used to allow additional transformations that are not possible with plain
OWL/SWRL.

5. SPARQL [82] queries are used to query the ontology for the output data. The resultset is
represented as XML according to the SPARQL Query Results XML Format [3].

6. The lowering XSLT script is used to transform the XML result to the output format.

Obviously the most time-consuming task in this setting is reasoning over the ontology (3)
which is applied for each document. In order to speed up this approach we added bulk-
processing. This means the reasoner is not started for every single document. Instead, a set of
documents is loaded to the ontology and reasoning is only done once for all the documents
in the bulk-job. Afterwards all the documents of the bulk-job are lowered to the target files.
The optimal size of the bulk-job is a tradeoff of the size of each document and the size of the
ontology. Unfortunately, the lowering requires two steps (5-6). XSPARQL[3] was supposed
to combine those steps but unfortunately there is currently no sufficient tool-support for it
available. At least we could speed up the XSLT processing by instantiating each XSLT script
only once.

3.5.2 Evaluation Setting

We have evaluated the different approaches by using two different XML-Schemas for docu-
ments that contain offers for goods. We annotated the documents with a reference ontology
that is based on the goodRelations8 ontology. The goodRelations ontology only covers the re-
lations between business entities. Therefore, we added an additional concept hierarchy that
describes the offered goods as well as additional properties for some not covered aspects of
the source and target schema. The product hierarchy is used to evaluate the scalability of the
approach with different ontology sizes. Therefore, we varied the number of products in the
product hierarchy. The source and target annotations vary in a way that subclass and equiv-
alent class relations need to be exploited to match the schemas in the declarative approach as
well as to query instance data for lowering in the lifting/lowering approach. In addition there
are the following differences: In the source schema zip-code and city are represented as two
elements and in the target schema there is only one element that contains both values. The
source schema requires the prices to be given in Euro, while the target schema assumes Dollar
values. Finally the source schema does not contain a totalprice attribute that is required by
the target schema. Therefore, it needs to be calculated by aggregating the prices of all goods

8http://www.heppnetz.de/projects/goodrelations/

50 3 XML-Schema Matching and Mapping

in a document. In the lifting and lowering approach those mismatches are solved on the on-
tology level using Jena rules. Another candidate language for those rules is SWRL [78] which
is directly integrated into the pellet reasoner. Unfortunately, it does not support aggregation
functions. Our declarative annotation based transformation approach solves these mismatches
with transformation templates. All details of the evaluation setting and the implementation
can be found in the technical report [54].

3.5.3 Experimental Results

We have evaluated the performance of our schema matching based approach against the lift-
ing/lowering implementation with regard to the overall transformation time for a set of doc-
uments. In figure 3.10 the results for the transformation of an offer document that contains
only one offered item are shown. The x-axis uses a logarithmic scale in order provide a better
readability of the diagram. We varied the size of the used reference ontology. The line de-
picted Schema-Map uses our declarative annotation based schema mapping approach with a
small reference ontology without additional products. The line L/L shows the lifting/lowering
approach for that reference ontology. In contrast Schema-Map-6065 and L/L-6065 use a larger
reference ontology with 6065 additional product categories. Finally Schema-Map-15665 and
L/L-15665 use a reference ontology with 15665 additional categories.
When only one document is transformed, the L/L approach takes 0.2 seconds. In contrast the
schema mapping based approach takes 2.6 seconds due to the additional startup-time for the
creation of the mapping. When 1000 documents are transformed the L/L approach takes 16.8
seconds, while the schema-mapping approach needs only 7 seconds. This is a performance
gain for the schema mapping approach of 1:2.4. The break-even of both approaches is reached
at approx. 200 documents.
When the ontology size increases as shown in line Schema-Map-6065 also the startup time
for the mapping generation increases to 11 seconds. When 1000 documents are transformed
Schema-Map-6065 takes 15 seconds, while L/L-6065 takes 35 seconds. Which is 1.84 times the
time of the schema-mapping approach. The break-even of both approaches is reached at
approx. 350 documents. Finally, when the ontology gets even bigger the start-up time for
schema mapping increases to 23 seconds. In order to transform 1000 documents Schema-Map-
15665 needs 27.5 seconds compared to 65.2 seconds for L/L-15665. This is a factor of 1:2.3. The
break-even of both approaches is reached at around 380 documents.
The line Rule-Based shows the results for an approach that transforms the documents based
on Jena rules by avoiding the usage of the ontology. This approach provides a better and
ontology-size independent performance than the L/L approach but does not provide the same
scalability as the Schema-Map approach.

In figure 3.11 the results for the transformation of documents that contain 10 offered items
are shown. The transformation of one document using L/L takes 0.3 seconds. In comparison
Schema-Map takes 2.6 seconds. When 1000 documents are transformed L/L takes 103.3 sec-

3

3.5. Performance Evaluation 51

0

10

20

30

40

50

60

70

1 10 50 100 1000

T
r
a

n
s
fo

r
m

a
ti

o
n

T
im

e
 i
n

S
e

c
o

n
d

s

Number of Documents

Transformation of Small Documents

Schema-Map

Schema-Map-6065

Schema-Map-15665

Rule-Based

L/L

L/L-6065

L/L-15665

Figure 3.10: Transformation duration in seconds for n documents containing 1 item

onds compared to 9.85 seconds for Schema-Map. Thus, the lifting/lowering approach is 10.48
times slower than the schema based approach. The break-even between both approaches is
reached at approx. 25 documents. When the ontology size increases (Schema-Map-6065) re-
quires 15.16 seconds for 1000 documents, while L/L-6065 needs 218 seconds. The schema-map
approach outperforms the lifting/lowering approach by a factor of 1:14. The break-even of
both approaches is reached at approx. 50 documents. Using the big ontology Schema-Map-
15665 requires 30 seconds for 1000 documents, compared to 481.35 for L/L-15665. This is 16
times more for the lifting/lowering approach. The break-even is also reached at around 50
documents.
The ontology-size independent pure rule based approach is slightly faster than the L/L ap-
proach with 75 seconds instead of 103.3 seconds for 1000 documents.

Finally figure 3.12 shows the results for a larger document that contains 100 offered items.
In this case Schema-Map requires 34.9 seconds for 1000 documents compared to 3820.8 seconds
of L/L. The schema-mapping approach outperforms the lifting/lowering approach with a factor
of 1:109. The break-even is reached before the first document. When the ontology size increases
(Schema-Map-6065) needs 43.15 seconds compared to 4859.89 seconds of L/L-6065 to transform
1000 documents. This is 112-times faster, than the lifting/lowering approach. The break-even

52 3 XML-Schema Matching and Mapping

0

100

200

300

400

500

600

1 10 50 100 1000

T
r
a

n
s
fo

r
m

a
ti

o
n

T
im

e
 i
n

S
e

c
o

n
d

s

Number of Documents

Transformation of Medium Documents

Schema-Map

Schema-Map-6065

Schema-Map-15665

Rule-Based

L/L

L/L-6065

L/L-15665

Figure 3.11: Transformation duration in seconds for n documents containing 10 items

is reached at around 2 documents. Finally using the big ontology Schema-Map-15665 takes
55.38 seconds compared to 7203,91 seconds of L/L-15665. This is a factor of 1:130. The break-
even is reached at approx. 3 documents. The ontology-size independent rule-based approach
gets a much worse performance, when the document size increases. It provides about the
same performance as the L/L-15665 approach.

Conclusion: The evaluation clearly shows that the hypothesis of chapter 1 that the pro-
posed build-time creation of XSLT-scripts that solely operate on the XML-level provides a
better scalability than a lifting/lowering approach was correct. It provides a much better scal-
ability with regard to the number of transformed documents, ontology size and document
size. The mapping generation has the disadvantage of additional startup costs9. When very
small documents need to be transformed the additional costs are compensated after 200 to 380
document depending on the ontology size. When the document size increases slightly to 10
offered items the break-even point is already reach after 25 to 50 documents. Finally when the
document size increases to 100 offered items per document the setup costs loose their impact
with a break-even between 0.65 and 3 documents. When it comes to the overall transformation

9We used hand-written scripts for the lifting/lowering implementation. When the lifting/lowering mappings were
generated automatically this time needs to be added as a startup-cost for the lifting/lowering implementation as well.

3

3.6. Conclusion 53

0

1000

2000

3000

4000

5000

6000

7000

8000

1 10 50 100 1000

T
ra

n
sf

o
rm

a
ti

o
n

T
im

e
 i
n

S
e

co
n

d
s

Number of Documents

Transformation of Large Documents

Schema-Map

Schema-Map-6065

Schema-Map-15665

Rule-Based

L/L

L/L-6065

L/L-15665

Figure 3.12: Transformation duration in seconds of n documents containing 100 items

time for 1000 documents the schema mapping approach provides a performance advantage
between 1:1.84 to 1:1.2.3 for small documents, 1:10 to 1:16 for medium and 1:109 to 1:130 for
big documents. This is a tremendous performance advantage for the schema based mapping
approach. The additionally tested rule-based approach that does also not require the ontol-
ogy at runtime was also clearly outperformed - especially, when the document size increases.
The results clearly show that the schema-based approach is the right choice for industry-scale
transformation scenarios.

3.6 Conclusion

In this chapter we have first introduced the problem of schema matching. Schema match-
ing is used to find correspondences between schemas in order to generate schema mappings.
Traditional schema matching approaches try to guess the semantics of the schema elements
by exploiting different dimensions such as element or attribute names or the structure of a
schema. Those approaches are typically limited to simple correspondences and do not support
the generation of complex matches. Complex matches require additional knowledge. Existing

54 3 XML-Schema Matching and Mapping

systems either use holistic schema mapping, instance data or explicit additional knowledge to
find a limited number of complex matches. In contrast our approach defines the semantics
of the schema elements by using declarative semantic annotations. We have therefore shown
how semantic annotations can be used to find simple correspondences and complex matches
with the help of annotated transformation templates.
We have then shown how different types of mismatches between schemas can be resolved
using our annotation and the proposed matching methods. Finally, we have discussed a proto-
type implementation and have evaluated the performance of our declarative annotation based
schema mapping approach compared to a lifting/lowering approach that uses standard Se-
mantic Web technologies and frameworks. The results clearly show that our hypothesis that
the schema mapping approach outperforms the lifting/lowering approach for enterprise-scale
scenarios was correct.

4

Chapter4
Change Representation

We have presented a declarative annotation method for XML-Schemas in chapter 2 and have
proposed matching methods for XML-Schemas that are annotated with the proposed annota-
tion method including a prototype implementation in chapter 3. An annotation path basically
forms a relation between a schema element and ontology elements. This leads to the problem,
that annotations can get invalid due to ontology changes. We have already discussed different
kinds of invalidation of annotation path expressions in chapter 1. The different invalidation
types are:

• Structural Invalidation

• Logical Invalidation

• Semantic Invalidation (detection of semantic changes)

We will describe the requirements for the change representation for the detection and re-
pair of the different kinds of invalidation in section 4.1. In section 4.4 we will provide a survey
of approaches for ontology evolution. As a pre-requirement for the survey we will discuss dif-
ferences between OWL and frame-based ontologies in section 4.2 and present an example for
changes and their consequences for OWL ontologies in section 4.3. Based on the requirements
and the survey we will finally describe the change representation approach for this research
including its implementation in section 4.5.

4.1 Change Representation Requirements

We need the representation of changes for different tasks: For the repair of structural invalid
annotation paths, especially changes of named concepts, properties and instances are of inter-
est. For example the annotation path /inovice/hasBillingAddress/Address/hasZipCode gets invalid
when the last datatype-property hasZipCode is renamed to hasZip in the new ontology version.

55

56 4 Change Representation

This means we need to know if named concepts or properties were deleted, renamed, split or
merged in order to find a suitable repair strategy for the structural maintenance. The logical
maintenance of annotation is based on the logical foundation of OWL. In this case it is impor-
tant to know, which axioms were added or deleted from the ontology in order to explain the
logical invalidation. Finally, the detection of semantic changes of annotation paths requires an
expressive description of the changes as well as the capability to dynamically query the conse-
quences of changes. Therefore, reasoning support over the old and the new ontology version
and the changes is required. We will provide an example for such a query: Has there been an
addition of an instance c to the class A or its subclasses, where the added instance c has not
been an instance of a subclass of A before? Such reasoning support should be supported by
using standard OWL reasoners and frameworks.

This leads to the following requirements for the change representation:

• Structural changes of concepts, properties and instances including composite changes
such as rename, split or merge operations.

• A complete axiomatic change-LOG for the justification of logical invalidations.

• Changes should be logged in form of ontology instances that connect the old and the new
ontology elements. Thus, reasoning over changes including the old and new ontology
can be realized with standard reasoners and frameworks.

4.2 Differences between OWL and Frame-Based Ontologies

The approaches that will be presented in the survey in section 4.4 use different ontology
modeling formalisms and languages. The most commonly used ones are frames and de-
scription logics (in form of OWL-DL ontologies). We have introduced both briefly in section
1.2.3 of the introduction. Since the different ontology formalisms have a big influence on the
representation of changes we will now discuss differences between OWL and frame-based
ontologies.

Complex Classes: Anonymous classes that use the different class constructors of OWL
allow the definition of arbitrary complex classes. Therefore, compared to frame-based ontolo-
gies a class is not organized in form of a static frame with slots and facets - instead it can
be constructed by arbitrary logical formulas that uses combinations of class constructors (see
1.2.4). We will provide an example for such a class definition.

SingleFather ≡ Person ∧ Male ∧ (∃ hasSon.person ∨ ∃ hasDaughter.person) ∧ ¬ married

This is still a comparably simple class expression. An example for deeply nested expres-
sion can be found in listing 2.1. Only in simple cases OWL class expressions can be compared

4

4.2. Differences between OWL and Frame-Based Ontologies 57

to the slots and facets of frame-based ontologies. In addition there are other fundamental
differences between Frames and OWL- ontologies [101]:

No unique name assumption: In contrast to frames OWL does not enforce the unique
name assumption. Thus, two things are not considered different because of different names.

Open World assumption: OWL uses the open world assumption. Thus, everything is
allowed unless a constraint is definitively violated.

Multiple models: While frame-based ontologies have exactly one minimal model that sat-
isfies all of the assertions there exist multiple models for an OWL ontology: All interpretations
that satisfy each of the assertions of the OWL ontology.

Assertion vs. classification: In frames slots and facets of a class define a constraint that
all instances of that class must fulfill. While this is also partly supported (with limitation
due to the open world assumption) in OWL an additional possibility is provided: Defined
classes. They are realized by defining the necessary and sufficient conditions for members of
the class. This allows the automatic classification of individuals and subclass-relations based
on the constraints and not only based on defined subclass assertions. Therefore, for example a
class is logically a subclass of another class if the restrictions are more restricting the possible
instances than the restrictions of the superclass.
This is realized by the two axioms of OWL concepts: superclasses and equivalent-classes.
Both axioms just link a concept to an anonymous class definition which is basically a logical
formula.

Consistency-Checking: In OWL the reasoner that realizes the classification also realizes
the consistency-checking by trying to find a model that satisfies all axioms. If this is not
possible the ontology is considered to be inconsistent. In Frames the reasoner checks whether
all property values on instances fulfill the constraints and no additional types can be assigned
to an instance. The open world assumption also has some influence on constraint checking:
An instance will not be considered as invalid if it does not have the required properties
because the reasoner assumes that it can still have them but they are simply unknown for this
instance. An instance or class is only invalid if it cannot get valid with additional knowledge.

OWL-DL which is based on description logics is only one sub-language of OWL. OWL-DL
puts some restrictions on the OWL language. For example the set of classes and individuals
must be disjoint 1. Therefore, OWL-DL does not allow meta-modeling and OWL2-DL allows
only limited meta-modeling. In contrast OWL-full does not constraint the usage of the

1This constraint was relaxed in OWL2 that allows limited [32] meta-modeling support by using punning [99],
where the semantics is separated depending on the context.

58 4 Change Representation

vocabulary in any way. Therefore, meta-modeling is supported but unfortunately OWL-full is
undecidable [70].

4.3 Ontology Changes

The required change operations over ontologies depend on the type of ontology and the used
modeling formalism. For example in a taxonomy typical operations are add, delete, rename
and changes in the hierarchy as well as the composite split and merge operations. In case of a
frame-based ontology the latter changes are also required but in addition changes to the slots
and facets need to be expressed. Finally, in case of OWL ontologies slots and facets can also be
expressed but in a different form: A concept is defined via the definition of EquialentClasses,
SuperClasses and DisjointClasses. Each of these definitions is expressed via anonymous classes
that are just arbitrary logical OWL formulas that may contain restrictions over properties
(comparable to slots and facets). This has the consequence that changes do not occur in form
of a change of slots and facets but as a change of some axiom. Therefore, a widely used
method for change-descriptions of OWL is just a LOG of axioms that were added or removed
from the ontology. Unfortunately, in many cases they will not show the real semantics of the
change. Therefore, an explicitly stated change may have additional (implicit) consequences for
the ontology. This happens in frame-based ontologies as well but in OWL it can also change
the class hierarchy due to classification. This leads to the problem that the subclass hierarchy
can be changed without ever changing a subclass axiom. We will provide a small example for
this behavior:

Class definitions:

ClassA

EquivalentClass(hasB some B and hasC some C)

ClassB

EquivalentClass(hasC some C and hasD some A)

ClassC

EquivalentClass(hasA some A and hasB some B)

Property Definitions of version 1

objectProperty hasA

objectProperty hasB

objectProperty hasC

Property Definitions of version 2

objectProperty hasA

4

4.4. Survey 59

objectProperty hasB

objectProperty hasC

domain: ClassB and ClassA

Subclass Hierarchy before the change

Thing

ClassA

ClassB

ClassC

Subclass Hierarchy after the change

Thing

ClassC

ClassA == ClassB

ClassB == ClassA

Before the change all classes are on the same hierarchy level. The introduction of a domain
axiom on the property hasC implicitly changes the class hierarchy because it states that classes
that have the hasC property are members of the intersection of ClassA and ClassB. This makes
ClassA and ClassB equivalent in the example. Because the classes are equivalent they both
have the properties hasA and hasB which makes them a subclass of ClassC.
The operation AddAxiom(hasC domain ClassB and ClassC) resulted in the additional implicit
changes: ClassA equals ClassB, ClassB equals ClassA, ClassA subclassOf ClassC, and ClassB sub-
classOf ClassC.

Therefore, changes take place explicitly and implicitly. Depending on the used ontology
formalism and type the possible implicit changes can just be the inheritance of additional
attributes/slots due to a change in the hierarchy or - as in the case of OWL - they can be
arbitrary changes. The problem here is that for the maintenance of annotation and for the
detection of semantic changes it makes no difference if the change was made explicitly or
implicitly. Any change can have consequences for the annotations. At least it can be assumed
that if there was no explicit change than there cannot be an implicit change.

4.4 Survey

In this section we will present approaches for different areas that need to deal with ontology
changes. We will present approaches for ontology evolution management, ontology compari-
son, change-tracing, change modeling, evolution systems, mapping, and multi-version reason-
ing. The approaches use different kinds of change representation: First, the implicit change
representation does not store the actual change, but the state of the ontology elements before

60 4 Change Representation

and after the change. Second, the explicit change representation actually expresses what was
changed. This explicit change representation can be expressed on different levels of abstrac-
tion: Just atomic changes or also composite changes that are composed of atomic changes.
Finally, the last representation method are mappings that relate entities from both ontology
versions to each other.

4.4.1 Ontology Evolution Management

The idea of ontology evolution management is that an existing ontology needs to be adopted
due to some new requirements. Given a consistent ontology we need to apply a set of changes
in order to get a new and consistent ontology version that fulfills the new requirements.

User-Driven Ontology Evolution Management

In User-Driven Ontology Evolution Management [93] the process of ontology evolution is de-
scribed. The authors divide the evolution process into 4 phases: Change representation, se-
mantics of change, change implementation, and change propagation.
In the change representation phase the required changes are modeled. The authors use a
RDFS-based ontology model that is enhanced with frame-logics, which is described in [94].
The authors state that it is not sufficient to represent changes in an atomic way because this is
error-prone and leads to numerous additional changes that are redundant. Instead they pro-
pose that the user should define the required changes via composite changes. A list of useful
composite changes is provided:

• Merge Concepts: Replace several concepts with one and aggregate instances.

• Extract subconcepts: Split a concept into several subconcepts and distribute the proper-
ties among them.

• Extract superconcept: Create a common superconcept for a set of unrelated concepts and
transfer common properties to it.

• Extract related concept: Extract related information into a new concept and relate it to
the original concept.

• Shallow content copy: Duplicate a concept with all its properties.

• Deep content copy: Recursively apply shallow copy to all subconcepts of a concept.

• Pull up properties: Move properties from a subconcept to a superconcept

• Pull down properties: Move properties from a superconcept to a subconcept.

• Move properties: Move properties from one concept to another concept.

• Shallow property copy: Duplicate a property with the same domain and range.

4

4.4. Survey 61

• Deep property copy: Recursively apply shallow copy to all subproperties.

• Move instance: Moves an instance from one concept to another.

In the second phase, the required atomic changes that are needed for a composite change
are computed. There can be multiple possible ways to implement a composite change. The
final result can be seen as one specific path in a decision tree. Each branch in the decision
tree is called a resolution point and each possible way at a branch is an elementary evolution
strategy. Thus, a (non atomic) evolution strategy defines how elementary changes will be
resolved. This also includes the resolution of inconsistencies. For example it needs to be
defined what to do with the subclasses of a deleted concept. Should they be deleted as well
or moved to a superconcept? The idea is that a set of general evolution strategies is provided
and the user can select one in order to define how the change should be realized.
In the change implementation phase a list of all changes and implications is computed and
shown to the user. The user can approve the change in order to apply them to the ontology.
When the changes are done they need to be propagated to the dependent artifacts in the
change-propagation phase.

The idea that the actual user-intention is represented using composite changes and that
the required atomic changes are computed afterwards, make the strategy very interesting
because the intended changes are stored on an appropriate high level in the system.

Consistent Evolution of OWL Ontologies

In [37] consistent ontology evolution is described as the process of creating a new consistent
version of a previously consistent ontology. This version is created by adding or removing DL-
Axioms. The used ontology model is OWL-DL. The authors address three different types of
consistency definitions: Structural consistency (the new version corresponds to the appropriate
language class), logical consistency (no contradictions) and user-defined consistency (user-
requirements that are expressed outside the ontology), and finally provide ways to ensure a
consistent evolution. Methods to find the cause of inconsistencies are described and evolution
strategies to resolve them are proposed.

4.4.2 Ontology Comparison Approaches

In this case, given two versions of an ontology the goal is to find the changes that were made
in order to transform the old version to the new version. Such approaches are especially
of interest if no trace of changes between the ontology versions exist. The approaches are
strongly related to schema matching (see chapter 3). The problem of comparing two ontology
versions with each other can be generalized to the problem of the comparison of two arbitrary
graphs which is known as the graph isomorphism problem. Unfortunately, this problem is

62 4 Change Representation

considered to be NP-complete [53]. However, one advantage in case of the comparison of
ontology versions is that typically only a very limited set of ontology elements is changed
between two versions and that the ontology graph has predefined semantics.

Ontology Versioning and Change Detection on the Web

One of the first approaches for the evolution/versioning of ontologies is described in Ontology
Versioning and Change Detection on the Web [49]. It is the basis for the ontology evolution tool
OntoView [51]. OntoView allows the user to manage different versions of ontologies and to
compute the difference between two ontology versions. The differences are computed with a
structural-level change-detection approach and are shown to the user by simple highlighting
in the graphical user interface. The approach distinguishes the following types of changes:
non-logical changes (for example changes of labels), logical definition changes (for example
change of subclass statements), identification changes (change of an URI/identifier), addition
of definitions and deletion of definitions.
A typical diff2 approach for text-files is not useful to compare ontologies since syntactical
changes do not necessarily result in changes in the ontology model. To overcome this problem
not the syntactical representation is compared but its representation in form of RDF-graphs.
In a first step all concept definitions of both ontology versions are transformed to RDF-triples.
This results in a number of small graphs which define the concepts. Afterwards the small
graphs from the source and target ontology are matched by either their URI or their properties.
In the last step rules are used to detect changes. A different set of rules is required for each
ontology language. The authors also state that depending on the ontology language it can be
required to first materialize the ontology-graphs to create a complete concept-hierarchy.
While reviewing the detected changes the user has the ability to specify conceptual relations
between the different versions of concepts. The overall approach is inspired by CVS systems.
It does not depend on a specific ontology language. The actual implementation supports
DAML+OIL [65] and RDF Schema [7]. The implementation does not use a reasoner and can
thus, only detect changes that were explicitly stated. The conceptual changes (provided by
the user) can be exported in form of a mapping ontology. The mapping ontology imports the
source and target ontology and relates the entities with the language constructs than can be
expressed with the specific ontology language. The authors state that this is only a partial
mapping because not all relations can be expressed.

Prompt-Diff

Prompt-Diff [71] is an adaption of the well known ontology merging algorithm PROMPT [72].
It is based on a fix-point algorithm and a number of heuristic matchers that are used to match
two ontology versions. It uses a frame-based ontology model and it was part of the older

2Comparable to the diff command on unix-based systems.

4

4.4. Survey 63

versions of the ontology management tool protege. The discovered changes are stored in the
so-called prompt-Diff Table. The table consists of tuples of the form:

< F1, F2, rename_value, operation_value, mapping_level >

• F1 and F2 are the names of two frames that match.

• rename_value is a boolean that indicates whether a rename occurred f alse means rename.

• operation_value defines the operation that took place: add, delete, split, merge, map (none
of the others).

• mapping_level can be unchanged, isomorphic (not structurally but logically equal), and
changed.

Therefore, Prompt-Diff is restricted to the comparison of frame-based ontologies. It sup-
ports atomic and some complex change operations.

S-Match

S-Match [79] is a matching algorithm for the matching of specific forms of lightweight ontolo-
gies. The input are simple hierarchies of labels. In a first step the node labels are transformed
to logical formulas using linguistic processing. For example a node with the name Herbivore
or Carnivore is translated to the expression (Herbivore ∨ Carnivore). If this node is a sub-node
of animal the complete formula is (Animal ∧ (Herbivore ∨ Carnivore)) The result are two
lightweight-ontologies [31] which are then used for matching. The result of the S-match algo-
rithm is a matrix that relates every node from the source tree to every node in the target-tree
with the strongest detected semantic relation. The possible relations are equivalence, more
general, less general, mismatch and overlapping. The algorithm solves the matching problem
by proving that the negation of the relation does not hold. Therefore, the matching is resolved
with a SAT-solver.

Detection Changes in Ontologies via DAG Comparison

In Detection Changes in Ontologies via DAG Comparison [27] an algorithm for the detection of
changes between two ontology versions is presented. In order to find the difference between
two ontology versions the ontologies are first transformed to rooted, directed acyclic graphs
(RDAG). In a next step a change-detection algorithm that is based on [12] computes an edit
script that transforms the old ontology version to the new version. The edit script supports
the operations: Insert and delete of nodes, edges and slots, update and rename of nodes and
update of edge types. The edit script only supports atomic operations and the two complex
operations rename and update. The approach operates on frame-based ontologies.

64 4 Change Representation

Rules-Based generation of Diff Evolution Mappings between Ontology Versions

The algorithm in Rules-Based generation of Diff Evolution Mappings between Ontology Versions [38]
starts with a set of basic matches between two ontology versions. Based on these matches the
changes that occurred are computed (evolution mapping) and an edit script that transforms
the old version to the new version is generated. The evolution mapping does not only contain
simple atomic operations but also complex operations. The authors show that the inverse of
the evolution mapping always exists and therefore, also a reverse edit-script can be created.
The ontology model is based on a Directed Acyclic Graph (DAG). Each node has a unique id
and can have concept attributes (like slots in a frame-based system). Relationships (subClass,
partOf, but also arbitrary user-defined relations) between the concepts are expressed in form
of arcs. Therefore, the ontology model is a DAG representation of a frame-based system that
uses the unique name assumption.
According to the DAG based ontology model change operations to add and delete nodes, arcs
and attributes are used. In addition, mapping expression that map a node, arc or attribute
from one version to another are provided.
The simple change operations are accomplished with a set of complex change operations.
The complex change operations can be applied on single elements such as substitute, move,
toObsolete, revokeObsolete or can be used on multiple elements: addLeaf, delLeaf, Merge, Split,
addSubGraph, delSubGraph. All change-operations are defined in form of rules. Thus, if a rule
fires, the specific change operation has occurred.

Logical Difference and Module Extraction with CEX and MEX

The previous approaches typically used structural changes to describe the changes between
two ontology versions. In Logical Difference and Module Extraction with CEX and MEX [55] an
approach is presented that calculates the logical difference between two ontology versions. The
approach is limited to terminologies (no multiple inheritance and only the two axioms equal-
Class and subClass are allowed) and does therefore, not support the full expressivity of OWL.
The result of the algorithm are logical axioms which, when merged with the old terminology
version, result in the new terminology version.

4.4.3 Change-Tracing Approaches

The comparison of two subsequent ontology versions can be avoided if a complete trace of
changes between both versions exists. Such a trace can for example be created by an ontology
management system. The trace can either consist of the applied changes in form of statements
that add, delete or modify ontology elements or by before and after images of the ontology
entities. This results in a low-level change representation that makes it hard to figure out the
actual user intention of a change. For example a set of atomic changes may actually result

4

4.4. Survey 65

Change Request
Change

Implementation
Change Detection Change Recovery

Change

Propagation

Figure 4.1: 5-phase ontology evolution approach of [80]

in a split. Therefore, the goal of change-tracing approaches is to generate additional change-
description that describe the changes on a higher level.

Ontology Change Detection using a Version LOG

The authors of Ontology Change Detection using a Version Log [80] argue that an atomic-change-
LOG is not useful for other systems and users to actually understand what was changed.
Therefore, changes should be described on different levels of granularity.
The main contribution of the paper is a mixed approach that allows the top-down specification
of intended changes as well as a bottom up identification of additional complex changes which
are detected by evaluating a version log. This leads to the following process for ontology evo-
lution which is depicted in figure 4.1: Change request (basic and composite changes), change
implementation (execution of required atomic changes on the ontology), change detection
(detection of additional composite changes and meta-changes), change-recovery (maybe the
changes induced unwanted side-effects, than the changes can be revised), change propagation
(propagation of the changes to dependent artifacts). The version LOG is based on transaction
time. Every change of one transaction has the same timestamp and all transactions are ordered
along the timeline. The LOG contains versions of ontology entities and not actual change-
operations. Based on this version LOG a declarative change definition language is used. The
changes are expressed in form of rules that can either be applied on the version LOG in order
to generate a change or that can be used to query the version LOG in order to identify changes.

The authors use the typical OWL constructs for their examples but their approach is not
limited to OWL ontologies. The general applicability for OWL ontologies is reduced by the
fact that all change definitions directly operate on the version log. Thus, if a change occurs
that has additional consequences for the classification of some concept in the inference-model
this additional change cannot be tracked. An example for such a change is shown in section
4.3. This limits the usefulness of the approach for general DL-based ontologies.

Change Tracer: Tracking changes in Web Ontologies

The authors of Change Tracer: Tracking changes in Web Ontologies [47] propose a Change History
Ontology (CHO) that logs the changes that happened to an ontology. Changes are described

66 4 Change Representation

via change-sets. A change-set has a time-interval, is applied on some resource and contains
a number of atomic changes. Atomic changes can be class-, property-, and instance-changes.
According to the type of change the following subclasses for each change-subject exist: add,
del and update. This results in changes like ClassAddition, PropertyAddition or ClassRenaming
or propertyRangeModification. The change Ontology is a basis for Change Tracer [46]. No
composite changes are supported. The main goal is the ability to roll-back and roll-forward
changes in order to retrieve different version of an ontology or to recover to a consistent state.

4.4.4 Change Modeling

The approaches from the last subsections all have their own method to model changes in
ontologies. The approaches often rely on a restricted ontology model and the representation
methods are mostly not described in detail. In this section we will describe an approach that
focuses on change representation.
In Change representation for OWL2 Ontologies [76] a complete identification of all possible
changes that can be made according to the OWL2 Meta-Model is provided. The result of the
work is an ontology of ontology changes. The main classes of this ontology are depicted in
figure 4.2. A change-LOG is a set of instances of this change ontology. One key class is the
class changeSpecification which has an intitalTimestamp, a lastTimestamp, and a reference to the
old and the new ontology version. In addition to this it is associated with a set of changes.
The changes are ordered in a sequence via the properties hasPreviousChange. In addition each
change has an author. The change-class has three subclasses: Atomic Change, Entity Change
and Composite Change. An atomic change has the subclasses add and delete and the property
appliedAxiom. The range of this property are OWL axioms as defined in the OWL2 meta
model. An entity change has the property relatedEntity which refers to OWL2 entities from
the OWL2 meta model. In order to express what change occurred the entityChange class has
numerous subclasses:
AnnotationPropertyChange with the subclass commentchange and ClassChange with the sub-
classes SubClassOfChange, DisjopintnessChange, Class EquaivalenceChange, ...
The last subclass of change is CompositeChange with numerous subclasses for example for
AddSubtree, MergeSiblings, MoveSubtree, SplitClass. The three subclasses of changes (Atomic-
Change, EntityChange and Composite Change) allow the change definition with different levels
of granularity. Every change can be represented as a sequence of atomic changes. In order to
define that an atomic change belongs to an entity change, entity changes have the property
consistsOfAtomicOperation. Composite changes have the property consistsOf to describe the
underlying changes.

Due to the meta-modeling limitations of OWL DL the change ontology cannot directly
refer to concepts and axioms of the ontology. In order to overcome this limitation the authors
use a meta ontology of OWL that is itself represented in form of an OWL ontology. Thus, the

4

4.4. Survey 67

0:n hasChange

ChangeSpecification

!

lexOMV v.0.1

[prefix:] Class Name

ObjectProperty

Change

owl2:Class

owl2:Datatype

owl2:NamedIndividual

owl2:ObjectProperty

owl2:DataProperty

0:n fromVersion

0:n toVersion

owl2:Entity

EntityChange

AtomicChange

0:n relatedEntity

CompositeChange

lexOMV v.0.1

owl2:ClassAxiom

owl2:Assertion

owl2:Declaration

owl2:ObjectPro-

pertyAxiom

owl2:DataPro-

pertyAxiom

owl2:Axiom

0:

n appliedAxiom

omv:Ontology
Generic

Class

subClassOf

DatatypeProperty

[prefix:] Class Name

DatatypeProperty

OWL2

Specialised

Class

prefix: Imported Ontology

Namespace Reference

Range

Domain

MIN:MAX Cardinality

1:n hasAuthor

1:1 hasPreviousChange

Log 1:1 hasLastChange
! uri
! date

! priority
! ! !

!
initialTimestamp
lastTimestamp

Removal

Addition

AnnotationPropertyChange

CommentChange

ClassChange

SubClassOfChange

DisjointnessChange

ClassEquivalenceChange

IndividualChange

IndividualEquivalenceChange

InverseObjectPropertyChange

AddSubtree

MergeSiblings

MoveSubtree

SplitClass

!

ObjectPropertyChange

Agent

omv:Person

Figure 4.2: The main classes of the OWL2 change ontology [76]

change description can reference entities of this meta ontology.
The approach is used in various plugins of the NeOn Toolkit3. The plugins include change
capturing, change argumentation and change propagation as well as collaborative ontology
development support. Especially the change argumentation plugin "Cicero" is of interest
for this survey because it deals with the (manual) definition of changes at higher levels of
abstraction. Thus, atomic and entity changes can be annotated with composite changes by the
user in order to describe the changes on a higher level.

3http://neon-toolkit.org

68 4 Change Representation

Modeling Changes in Ontologies

In Modeling Changes in Ontologies [25] an ontology versioning approach based on a versioning
graph is proposed. The ontology definition is based on classes an relations between classes. A
class has slots to assign attributes and properties. Thus, the ontology model is influenced by
frame-based systems. Classes and relations both have two timestamps that represent the valid-
time of a class or property respectively. In order to manipulate the ontology versioning graph
the operations for the insertion, deletion and update of classes and relations are introduced
and the effects for the valid-time definition are shown. The granularity of an update operation
is the class or relation-level. Thus, an update of a slot is reflected as an update of a concept.
The authors present how a specific version of an ontology can be retrieved from the ontology
versioning graph and possible implementation approaches are discussed.

4.4.5 Ontology Evolution Systems

The goal of ontology evolution systems it the ability to retrieve different version of one on-
tology efficiently. These approaches also need to deal with changes that were made in the
ontology. These changes can either be modeled in form of before- and after-images, change-
logs or time-stamping of each ontology element. Such systems can be a basis for further
change-analysis and are therefore, also of interest for the change representation.

A new Approach to Managing the Evolution of OWL Ontologies

A new Approach to Managing the Evolution of OWL Ontologies [13] describes an ontology evo-
lution system that allows the retrieval of a specific ontology version out of a multi-version
ontology storage. In contrast to other approaches where ontologies are modeled in form of
graphs this approach is solely based on the atomic parts of OWL ontologies: Axioms and an-
notations. A LOG-file called evolutionary LOG describes the lifetime of every singe axiom or
annotation by attaching the two timestamps creation and retirement. Therefore, it is sufficient
to check which axioms were created before a given point in time and are not yet retired in
order to retrieve some specific ontology version. In addition to the timestamps also meta-data
about an axiom such as creator and access information are stored. An axiom or annotation
cannot be changed. Only the meta-data can be updated. Thus, if an axiom needs to be changed
the original axiom is set to be retired and a new one is introduced. The access to axioms can
be restricted and additional meta-data can be provided. The system can thus, be a basis for
the collaborative ontology editing. The system allows to retrieve any version of an ontology
and implements algorithms to preserve the consistency.
While the approach can be used for any logic based ontology language and all language
features are supported, it does not support any detailed information about the semantics of

4

4.4. Survey 69

changes. Compared to other approaches only delete and add operations of axioms and anno-
tations are supported.

Efficient Management of Biomedical Ontology Versions

In Efficient Management of Biomedical Ontology Versions [48] a central ontology storage system
is described that stores an ontology with multiple versions without redundancies. The key
concept of the system is a relational schema that stores ontologies, versions concepts, relation-
ships, relationship type attributes and attribute values. Multiple importers exist for different
ontology formats. When a new ontology version is important it is compared with the previous
version. For the comparison of the versions a specific property of Life-Science-Ontologies
is used: Accession numbers. These numbers uniquely identify a concept and can therefore,
dramatically reduce the matching complexity. The matching allows the creation of a list of
added and deleted concepts as well as of added and deleted attributes of concepts. The
change-set is then used to update the database. Therefore, new concepts or properties are
added to the database and deleted concepts or attributes are marked as deleted by adding an
end-timestamp.

The applied ontology model assumes the existence of accession numbers and supports
concepts and attributes of concepts as well as relationships between concepts. This limits the
application to ontologies that have unique ids and do not require more expressive language
concepts as found in description logic ontologies. The change-analysis component is only
used to import new ontology versions. The changes are not explicitly stored in a change-log.

4.4.6 Ontology Mapping and Multi-Version Reasoning

The evolution of ontologies can also be seen as a special case of an alignment where arbi-
trary ontologies are aligned. Therefore, we also present an API for ontology mappings. The
mapping approaches do not explicitly define what was changed. Instead two ontologies are
mapped. The authors of An API for Ontology Alignment [29] describe an API that allows the
alignment of multiple ontologies in order to generate axioms or rules for transformations. It
is based on an abstract alignment format. An alignment is based on a correspondence. A
correspondence is a quadruple < e, e′, R, n >. Where e and e′ are entities from the source and
target ontology, R is a relation and n is a degree of confidence for the correspondence. The
authors describe three levels of alignments:

• Level 0: e and e′ are single entities that are addressed by URI’s / path expressions and
the relation is equal by default but can also be subsumption or incompatibility or even a
fuzzy-relation.

• Level 1: Instead of a pair of entities, pairs of sets are aligned.

70 4 Change Representation

• Level 2: The mappings are formulated in form of rules including variables.

Once the alignments are defined they can be transformed to different output formats such
as OWL axioms or SWRL [78] rules using different renderers. In case of OWL the mappings
are transformed in form of bridging axioms that merge both ontologies. The bridging axioms
are typical OWL relations such as subClassOf or equivalentClass. Due to this limitation, this
renderer only supports Level 0 and Level 1 mappings.
In contrast, the SWRL rule renderer also supports Level 2 alignments but needs to be adopted
to the specific definition language for the level 2 alignments. Since SWRL rules can only
operate on instance-data in the ontology this approach is not applicable for our declarative
annotation scenario where purely declarative alignments are required because instances are
never lifted to the ontology.

The authors of Reasoning with Multi-version Ontologies: A Temporal Logic Approach [40] claim
that it is not sufficient to analyze the changes on the structural level because dependent
application rely on the reasoning result.
Therefore, they have implemented a multi-version reasoning system "MORE" that allows to
ask questions on multiple versions in order to detect changes such as: Are all facts from
the old version still derivable in the new version? What facts are not derivable anymore?
What new facts are derivable from the new version? Which part of the ontology is backwards-
compatible and which not? The system is based on the extension of OWL with linear temporal
logics, using a linear version space with relative and absolute version numbering, that allows
temporal operators such as AllPriorVersions, SomePriorVersion, PreviousVersion, and Since.
Those extensions can for example be used to query all facts that are not derivable in the new
version by simply asking the reasoner for ¬ φ∧ PreviousVersion φ, where φ are the derivable
facts. The implementation focuses on queries about the concept-hierarchy but the authors
claim that this could easily be extended to other DL-queries. The system does not store the
changes explicitly, instead the consequences can be queried. Since the changes are represented
implicitly operations like rename or non logical merges cannot be represented/queried. A
non logical merge is a merge, where the merge cannot be inferred logically.

4.4.7 Discussion of the Approaches

The presented approaches solve different classes of problems but all include some kind of
change representation between ontology versions. The approaches are now compared accord-
ing to their usefulness for this research. Table 4.1 compares the different approaches with
regard to the supported ontology type, their main goal, the used change-format, support for
explicit (structural) changes, the support for composite changes and the support for a complete
change-LOG for OWL2 ontologies. The dimensions are based on the change representation
requirements from section 4.1.
The ontology evolution management approach [93] does not operate on OWL. Nevertheless,

4

4.4. Survey 71

the general idea, that the user describes the intended changes in form of composite change-
operations is a valuable idea because it eliminates the problem of the detection of such changes
because they are defined explicitly by the user. The work of [37] operates on OWL-DL ontolo-
gies and uses an axiomatic change-log. The main goal is to guarantee that a succeeding version
is consistent under various aspects (structural, logical and user-defined). This problem is re-
lated to the structural, logical and semantic validity of annotations.
All comparison approaches operate on limited ontology models. The approaches [71], [27],
[38] use frame-based ontology formalisms, [79] is limited to simple hierarchies of terms and
[55] is limited to terminologies. Thus, no ontology comparison approach is suitable for OWL2
ontologies. On the other hand most of the frame-based comparison approaches [71], [27],
[38] support explicit changes over the ontology graph. The approach [38] also supports the
detection of composite changes. The limited expressivity of the used ontology formalisms of
the comparison approaches also results in the fact the the generated changes cannot provide
a complete change-LOG that allows to transform one version of an OWL2 ontology to a suc-
ceeding version.
The goal of the change-tracing approaches [80] and [46] is to detect high-level changes by eval-
uating atomic changes of a change-log. However when they are used for OWL they cannot
detect high-level changes that only occur in the classified ontology versions because the only
operate on the change-log. This limits the usefulness for OWL ontologies.
The ontology evolution systems do naturally not support explicit changes. It is sufficient to
store the changes implicitly for this domain. This can be realized by time-stamping of the ob-
jects of the frame-based meta-model of [25] and [48] or by times-tamping the axioms of OWL
in [13]. We refer to this solution as an implicit change representation. The change-modeling
approach of [76] fulfills all the requirements: It is a complete-change-LOG that is based on
the OWL2 meta model. It allows atomic and complex changes and it can store the detected
changes in form of instances of a change ontology that directly relate meta ontology instances
of the old version to meta ontology instances of the new version. However, the approach can
express the changes on different levels but it does not support to detect high-level changes.
Only a plugin- for manual change-argumentation is mentioned.
The general ontology mapping framework [29] can be used to map arbitrary ontologies. This
mapping does not express explicitly what has changed. In order to allow a full-mapping a
rule-based level 2 mapping is required, which allows to transform instances of the old version
to instances of the new version. Unfortunately such an instance-based transformation is not
applicable for our scenario, where instances of the documents are never lifted to the ontol-
ogy. The MORE system [40] supports OWL and in contrast to all other change representation
approaches it allows to query for implicit changes that only occur in the inference model by
extending OWL with temporal logics. This makes it very powerful for the detection of the
consequences of changes. However, there is no explicit representation of changes and complex
operations such as rename and non logical merges are not supported. This makes the approach
well suited for semantic consequence checking but not suitable for the structural repair of
annotations.

72 4 Change Representation

R
ef

O
nt

ol
og

y
Ty

pe
M

ai
n

G
oa

l
C

ha
ng

e-
Fo

rm
at

Ex
pl

ic
it

C
ha

ng
es

C
om

po
si

te
C

ha
ng

es
C

om
pl

et
e

O
W

L
[9

3]
R

D
FS

+F
-L

og
ic

Ev
ol

.M
gm

nt
.

G
ra

ph
-O

pe
ra

ti
on

s
ye

s
ye

s
no

[3
7]

O
W

L-
D

L
Ev

ol
.M

gm
nt

.
A

xi
om

s
D

iff
no

no
ye

s
[5

1]
R

D
FS

/D
A

M
L-

O
IL

C
om

pa
ri

so
n

G
ra

ph
di

ff
ye

s
ye

s,
m

an
ua

lly
no

[7
1]

Fr
am

es
C

om
pa

ri
so

n
Pr

om
pt

-D
iff

Ta
bl

e
ye

s
ye

s
no

[7
9]

Li
gh

t-
W

ei
gh

t
C

om
pa

ri
so

n
Lo

gi
c

R
el

at
io

ns
no

no
no

[2
7]

Fr
am

es
C

om
pa

ri
so

n
Ed

it
-S

cr
ip

t
ye

s
re

na
m

e
no

[3
8]

Fr
am

es
C

om
pa

ri
so

n
Ed

it
-S

cr
ip

t
ye

s
ye

s
no

[5
5]

Te
rm

in
ol

og
y

C
om

pa
ri

so
n

A
xi

om
D

iff
no

no
no

[8
0]

G
en

er
al

C
ha

ng
e-

Tr
ac

in
g

Ve
rs

io
n

LO
G

ye
s

ye
s

-
[4

6]
O

W
L

C
ha

ng
e-

Tr
ac

in
g

C
ha

ng
e

O
nt

ol
og

y
ye

s
ye

s
-

[7
6]

O
W

L2
C

ha
ng

e
M

od
el

in
g

C
ha

ng
e

O
nt

ol
og

y
ye

s
ye

s
ye

s
[2

5]
Fr

am
es

C
ha

ng
e

M
od

el
in

g
Ti

m
es

ta
m

pe
d

D
A

G
no

no
no

[1
3]

O
W

L
O

nt
ol

og
y

Ev
ol

.
A

xi
om

LO
G

no
no

ye
s

[4
8]

Fr
am

es
O

nt
ol

og
y

Ev
ol

.
na

no
no

no
[2

9]
G

en
er

ic
M

ap
pi

ng
M

ap
pi

ng
no

no
no

[4
0]

O
W

L
M

ul
ti

ve
rs

io
n

R
ea

so
ni

ng
im

pl
ic

it
no

no
ye

s

Ta
bl

e
4.

1:
C

om
pa

ri
so

n
of

on
to

lo
gy

ch
an

ge
ap

pr
oa

ch
es

[9
3]

U
se

r-
D

ri
ve

n
O

nt
ol

og
y

Ev
ol

ut
io

n
M

an
ag

em
en

t
[3

7]
C

on
si

st
en

t
Ev

ol
ut

io
n

of
O

W
L

O
nt

ol
og

ie
s

[5
1]

O
nt

oV
ie

w
-

[7
1]

Pr
om

pt
-D

iff
-

[7
9]

S-
M

at
ch

-
[2

7]
D

et
ec

ti
on

C
ha

ng
es

in
O

nt
ol

og
ie

s
vi

a
D

A
G

C
om

pa
ri

so
n

[3
8]

R
ul

es
-B

as
ed

ge
ne

ra
ti

on
of

D
iff

Ev
ol

ut
io

n
M

ap
pi

ng
s

Be
tw

ee
n

O
nt

ol
og

y
Ve

rs
io

ns
[5

5]
Lo

gi
ca

lD
iff

er
en

ce
an

d
M

od
ul

e
Ex

tr
ac

ti
on

w
it

h
C

EX
an

d
M

EX
[8

0]
O

nt
ol

og
y

C
ha

ng
e

D
et

ec
ti

on
us

in
g

a
Ve

rs
io

n
LO

G
[4

6]
C

ha
ng

e
Tr

ac
er

:T
ra

ck
in

g
ch

an
ge

s
in

W
eb

O
nt

ol
og

ie
s

[7
6]

C
ha

ng
e

re
pr

es
en

ta
ti

on
fo

r
O

W
L2

O
nt

ol
og

ie
s

[2
5]

M
od

el
in

g
C

ha
ng

es
in

O
nt

ol
og

ie
s

[1
3]

A
ne

w
A

pp
ro

ac
h

to
M

an
ag

in
g

th
e

Ev
ol

ut
io

n
of

O
W

L
O

nt
ol

og
ie

s
[4

8]
Ef

fic
ie

nt
M

an
ag

em
en

t
of

Bi
om

ed
ic

al
O

nt
ol

og
y

Ve
rs

io
ns

[2
9]

A
n

A
PI

fo
r

O
nt

ol
og

y
A

lig
nm

en
t

[4
0]

R
ea

so
ni

ng
w

it
h

M
ul

ti
-v

er
si

on
O

nt
ol

og
ie

s:
A

Te
m

po
ra

lL
og

ic
A

pp
ro

ac
h

4

4.5. Change Representation Approach 73

4.5 Change Representation Approach

The discussed approaches use different kinds of ontology models. There are solutions that use
a graph-based meta-model for ontologies such as [71], [51], [27], [25], [38]. They are directly
applicable for frame-based ontologies. In this case the ontology is treated more or less like
a conceptual model. Therefore, operations that modify this model are of interest. In our
approach we use the semantic annotations to link schema elements to named elements of the
ontology in order to describe them in form of a common conceptual model. Changes of this
model require changes of the annotations. Therefore, this kind of change representation is well
suited for the structural maintenance of annotations.
In contrast, methods for OWL need to treat changes in form of the addition or removal of
axioms. The changes can be expressed implicitly by defining the valid-time of the axioms
as proposed in [13] or by using an expressive change description that provides all kind of
change-operations over OWL2 like [76]. While this kind of representation can be used to enable
ontology evolution and versioning it can still be hard to figure out what actually happened
in the conceptual model due to a change. For example the change of a domain or range of
a property can change the class hierarchy (see section 4.3). This hierarchy change will never
occur in the change-LOG but it will have consequences in the inference model and possibly also
for the annotations. In order to get change-operations over the ontology graph - as possible
for frame-based ontologies - not the explicit definitions of the ontology versions need to be
compared, but the materialized ontologies. Such a comparison can only detect a predefined
subset of changes. Especially for the detection of semantic changes of annotations it needs
to be possible to query the change representation for additional arbitrary implicit changes.
A query could be: Has there been a split of a subconcept of A in the old version such that
now all newly created concepts that were related to this split are only subconcepts of B? This
kind of queries require reasoning over both ontology versions and the changes. This is partly
supported by [40] because it allows reasoning over multiple ontology versions but it does not
explicitly store the changes.
Because none of the discussed approaches allows the detection and explicit representation of
changes, a complete edit-script and the possibility to reason over multiple versions and the
changes, we propose a hybrid approach for this research. It is depicted in figure 4.3.

In our approach the input ontology versions On and On+1 are first classified and then trans-
formed to instances of a meta ontology that represents the structure of the named elements
of the input ontologies. In a next step the meta ontology instances can be compared using a
structural comparison approach such as [38] or [27]. Finally the detected changes are stored in
form of instances of a change ontology. These instances directly relate meta ontology instances
of On to meta ontology instances of On+1. Since these changes are only structural changes
over the meta ontology they do not provide a complete change-LOG that allows to transform
the source ontology On version to the target ontology version On+1. Those changes can be
stored additionally in form of a simple axiom log. The change representation of our approach

74 4 Change Representation

OWL On

Meta-Ontology

Meta-Ontology
Instances On

Meta-Ontology
Instances On+1

OWL On+1

Axiom-Log

Change-Ontology
Instances

Structural
Comparison

Classify &
Transform

Classify &
Transform

InstanceOfInstanceOf

Concept
Property

-type

Datatype-PropertyObject-Property

-value

-type

Restriction

Individual

DataValue

*

*

*

*

*

*

**

*

*

*

*

*

*

**

dataTypePropertyAssertion

ObjectPropertyAssertion

instanceOf

range

domain

subConceptOf
subPropertyOf

B

A

C

subclass

instanceOfinstanceOfinstanceOf

D E F

subclass

B

A

instanceOf

instanceOfinstanceOf

D E F

subclass

Figure 4.3: Proposed change representation approach

consists of the instances of the change ontology and the instances of the meta ontology. This
allows standard reasoning with OWL reasoners and the application of rules and queries on
these instances.

4.5.1 Meta Ontology

As already discussed we use a simplified meta ontology that concentrates on the structure of
named entities of the ontology. The model is influenced by RDFS and frame-based systems
and is depicted in figure 4.4. It contains the relevant aspects of typical ontology languages.
Basically an ontology consists of concepts, properties and individuals. Concepts and properties
are hierarchically structured. An individual is an instance of a set of concepts. A property
has a domain that defines the set of classes that have this property. Properties are divided
into object-properties and datatype-properties. Object-properties form relationships between
classes and have a range that defines the set of classes which are targets of the property.
Datatype-properties have a definition of the data type. Properties are modeled on the class
level while an instantiation of a property is done on instance-level using property assertions.

4

4.5. Change Representation Approach 75

Concept
Property

-type

Datatype-PropertyObject-Property

-value

-type

Restriction

Individual

DataValue

*

*

*

*

*

*

**

*

*

*

*

*

*

**

dataTypePropertyAssertion

ObjectPropertyAssertion

instanceOf

range

domain

subConceptOf
subPropertyOf

Figure 4.4: Ontology meta-model

Concepts may restrict the usage of properties. A restriction has a type and a value. The type
indicates the type of restriction (min, max, value) the value indicates the value that is attached
to this restriction. Individuals can have propertyAssertions that indicate that an individual
instantiates some property. In case of an object-property the target of a propertyAssertion is
another individual. In case of datatype-properties it is some data-value.

4.5.2 Change Ontology

The change ontology contains a hierarchy of change-operations. The complete list of changes
is depicted in figure 4.5. We will now briefly describe the main change-operations and their
effects. Each change operations has a unique identifier tid.

Global Changes

Global changes add or remove concepts, properties or instances. The table below shows the
basic add-operations and their inverse delete-operations.

76 4 Change Representation

Figure 4.5: Class hierarchy of the change ontology

c c−1

addConcept(tid,uri) delConcept(tid,uri)
addObjectProperty(tid,uri) delObjectProperty(tid,uri)
addDataTypeProperty(tid,uri) delDataTypeProperty(tid,uri)
addInstance(tid,uri) delInstance(tid,uri)

The obvious preconditions of deletes are that the corresponding element must be an ele-
ment of the corresponding type in the old ontology version. In contrast, the additions requires
that a specific element does not exist in the old ontology version. The effect is the existence of
the newly added element in the new ontology version.

4

4.5. Change Representation Approach 77

Hierarchy Changes

In addition to the global operations, hierarchy change-operations are used to express changes
in the concept and property hierarchy, as well as of the instanceO f relation of instances.
We depict the add-operations and their inverse delete operations in the table below. The
abbreviation cUri and iUri stand for the URI of the added or removed child element, pURI
for the URI of the parent.

c c−1

addChildConcept(tid,cUri,pUri) removeChildConcept(tid,cUri,pUri)
addChildObjectProperty(tid,cUri,pUri) removeChildObjectProperty(tid,cUri,pUri)
addChildDatatypeProperty(tid,cUri,pUri) removeChildDatatypeProperty(tid,cUri,pUri)
addInstaceToConcept(tid,iUri,cUri) removeInstFromConcept(tid,iUri,cUri)

Rename Changes

Rename changes are used to modify the URI of the specific ontology elements. We assume that
these operations are global in the sense that every usage of the URI is changed automatically.
In addition we assume that these operations are atomic operations. Therefore, a rename does
only show up as a rename but not as a delete and a subsequent insert.

c c−1

renameConcept(tid, oldUri, newUri) renameConcept(tid, newUri, oldUri)
renameProperty(tid, oldUri, newUri) renameProperty(tid, newUri, oldUri)
renameIndividual(tid, oldUri, newUri) renameIndividual(tid, newUri, oldUri)

Update Changes

Update changes are used to modify the domain and ranges of properties as well as to maintain
restrictions over properties on concepts and to modify property assertions on individuals. The
inverse operations of update changes are update operations of the same type but with swapped
parameters.

• updateRestriction(tid, conceptUri, propertyUri, OldValue, OldType, NewValue, New-
Type)

• updateDomain(tid, propertyUri, {OldConceptUri}, {NewConceptUri})

• updateRange(tid, propertyUri, {OldconceptUri}, {NewconceptUri})

• updateType(tid, propertyUri, OldDataType, NewDataType)

• updatePropertyAssertion(tid, instanceUri, propertyUri, oldvalue, newvalue)

78 4 Change Representation

Composite Changes

In addition to the basic operations a set of composite operations is of interest. A merge
operation merges a a set of concepts, properties or instances to one single concept, property
or instance. The inverse operation of a merge is a split.

c c−1

mergeConcept(tid,{conceptUri},conceptUri) splitConcept(tid,conceptUri,{conceptUri})
mergeProperty(tid,{propertyUri},propertyUri) splitProperty(tid,propertyUri,{propertyUri})
mergeInstance(tid,{instanceUri},instanceUri) splitInstance(tid,instanceUri,{instanceUri})

A composite operation is reflected as a sequence of other change-operations. In order to
specify that an atomic change-operation is part of a composite change the atomic operation is
annotated with the tid of the corresponding composite change with statements of the form:
ChangeAnnotation(tidO f CompositeChgange, tidO f AtomicChgange)

Implicit Changes

In addition to provided explicit changes there are implicit changes. These changes can directly
be caused by explicit changes. We expect the following implicit changes to be automatically
included in the change representation:

• If a concept is added or removed as a child of an existing concept and the existing concept
or one of its parents has a restriction on a property then a restriction change is made on
the added or removed concept implicitly.

• If a property is added or removed as a child of another property then the domain and
range of the added or removed property is changed implicitly.

4.5.3 Implementation

We have implemented the change representation approach using the Jena4 Semantic Web
framework. The OWL representation of the proposed meta ontology of figure 4.4 simply
consists of classes for concepts, properties and instances as well as properties that indicate the
relations. We use the properties subClassOf, subPropertyOf and instanceOf to define the class
and property hierarchy and the instance of relation. In order to distinguish the relations for the
old and new ontology version all those properties exist with postfixes New and Old in order
to describe, that the relations holds in the old or the new ontology version. These properties
describe only the direct relations between classes. In order to express the transitive relations,
properties with the additional postfix In f are used. The computation of those inferred proper-
ties can be realized by simple rules over the meta ontology instances. An example rule for the

4http://incubator.apache.org/jena/

4

4.5. Change Representation Approach 79

inferred subclasses is the following: subClassOfNew(?b, ?a) , subClassOfNew(?c, ?b) -> subClas-
sOfNewInf(?c, ?a). The meta ontology also contains properties for property restrictions, domain
and range of properties and property assertions of individuals. Each hierarchical relation has
an inverse relation (eg. subClassOf/SuperClassOf)

The implementation of the change representation operates in multiple phases:

• Classify the old version On and the new version On+1 using the pellet reasoner.

• Transform On and On+1 to instances of the meta ontology MOn and MOn+1.

• Generate changes by querying MOn and MOn+1 together with explicitly provided
knowledge about renames, merges and split operations.

• Store the found changes in form of instances of the change ontology. The changes relate
instances of MOn and MOn+1.

Meta Ontology Transformation: The transformation step is realized by iterating over all
classes and properties of the classified input ontologies. We use the Jena API and the pellet
reasoner for this purpose. For each class the relations to its direct subclass are added to the
meta ontology using the property assertion subConceptOfOld for the old ontology version and
subConceptOfNew for the new ontology version. The sub-property hierarchy is transformed
analogously using the properties subPropertyOfOld and subpropertyOfNew. During this iteration
also the property assertions for the meta ontology instances, for the domain and range of
properties as well as for property restrictions are added in form of property assertions. In
addition the instances are generated and linked to their direct concepts with the property
assertion instanceO f Old and instanceO f New respectively.

Change-Generation: We treat the rename, merge and split operations as known a priori.
Therefore, our implementation cannot construct them. Instead the rename operations are
used to guarantee that elements with the same URI in both ontologies refer to the same
elements. This is realized with an additional preprocessing step, that renames all URIs of
the old version to the URIs in the new version. In practical scenarios the rename, split or
merge operations can either be provided by the used ontology management system or by
using change-detection algorithms such as [71] or [27]. The generation of all other changes
is realized by simple SPARQL queries over the meta ontology instances. We provide an
example for added subconcepts in listing 4.1. It basically queries for all subclasses that
are subclasses of some concept in the new version that were not subclasses of that con-
cept in the old version: subClassO f New(?sub, ?super)∧ ¬ subClassO f Old(?sub, ?super) ⇒
addChildConcept(?sub, ?super). Only the limited support for negation makes the SPARQL
query a bit longer using the filter predicate.
The composite operations merge and split are directly added as instance of the change
ontology. In addition, all atomic change-operations that are used to implement the merge or
split (such as delete or add) are queried using simple SPARQL queries. The resulting atomic
changes are than enhanced with a property assertion of the property partO f ComplexChange

80 4 Change Representation

to the specific instance of the composite change operation.

1 SELECT ? sub ? super
2 WHERE {
3 ? sub subClassOfNew ? super .
4 OPTIONAL { ?y subClassOfOld ? super . FILTER (? sub = ?y) . }
5 FILTER (!BOUND(? y))
6 } ;

Listing 4.1: Example SPARQL query for the detection of added subconcepts

Generated Output: The generated output of our implementation is an ontology that con-
tains both, the instances of the meta ontology of the old and new ontology version and the
detected changes. This allows to use standard technologies such as SWRL or SPARQL to query
both the changes as well as the consequences with regard to the old and the new ontology ver-
sion. This output is later used for the structural maintenance of annotations as well as for the
detection of semantic changes. An example of the generated output can be found in figure 8.6
of the case-study in chapter 8.

Our change-detection implementation turned out to provide a very good performance (less
than a minute of comparison time) even, when big ontologies with ten-thousands of concepts
were compared.

4.6 Conclusion

In this chapter we have first discussed the requirements for the change representation for the
structural, logical and semantic maintenance of annotations. We have then provided a sur-
vey on approaches that deal with ontology changes. The approaches can be divided into two
groups: Approaches that operate on frame-based ontology formalisms and approaches that
operate on DL-based modeling formalisms. The frame-based approaches typically represent
changes in form of operations over the ontology-graph. This kind of representation is directly
useful for the structural maintenance of annotations. In case of OWL ontologies the typical
form of change representation is an axiom-LOG that defines what axioms were added or re-
moved. This kind of change representation can be used to create the new ontology version
from the old one but it does typically not explicitly express the semantics of the changes.
Because our approach is based on OWL but we still need declarative change operations and
reasoning support over the ontologies and changes we have decided to combine the best of
both worlds with a hybrid approach. In this approach the input OWL ontologies are classi-
fied and then transformed to instances of a meta ontology that focusses on the structure of
named entities of the ontology. On this representation the changes are identified and stored
as instances of a change ontology. This form of representation allows to query the changes

4

4.6. Conclusion 81

in combination with both ontology versions. This high-level change representation approach
can be accomplished with an additional standard axiom-based log-file to enable ontology ver-
sioning and to assist the justification of logical invalidations of annotations. We have finally
presented the implementation of the proposed change representation using standard Semantic
Web frameworks.

82 4 Change Representation

5

Chapter5
Structural Maintenance of Annotations

The evolution of the reference ontology has consequences for the validity of the annotations
and the interpretation of the schema elements. When the reference ontology evolves the se-
mantic annotations need to be maintained. We distinguish three different kinds of invalida-
tions: Structural, logical and semantic invalidation (detection of semantic changes). In this
chapter we concentrate on the structural maintenance of annotations. We first present change
operations on annotation paths that can be used to maintain invalid paths in section 5.1. In sec-
tion 5.2 we define structural invalidations and propose an algorithm to detect such structural
errors. Section 5.3 presents atomic and composite evolution strategies for structurally invalid
paths and proposes an algorithm for the automatic computation of possible repair actions. The
algorithm and the evolutions strategies are based on the change representation from chapter
4.

5.1 Annotation Change Operations

The goal of annotation change operations is to modify annotation path expressions. On the
one hand such operations can directly be integrated into an annotation maintenances system
in order to process changes. On the other hand a LOG of changes can be used as a basis for a
versioning system for annotations.

5.1.1 Problem Definition

Given a set of annotation path P that are used for a specific XML-Schema S we need a set of
operations that allows to change any annotation p in P to a transformation of p that we call p′.
p′ can be a variant of p or a totally new annotation. Every annotation path in P consists of a

83

84 5 Structural Maintenance of Annotations

sequence of steps that refer to concepts or properties of the reference ontology O. Each step s
in p has a unique position and a type.

5.1.2 Local Changes

We divide the change operations into local and global change operations. A local change
operation changes one specific step of an annotation path p. Each local change operation has
a reference to the changed annotation path and a position pos. The position defines the step
that is subject to change. It is provided by an index starting at 0.

• AddStep(path, pos, step) - Adds a new step at position pos.
path[pos] = step; All steps with an index equivalent or greater than pos are shifted to the
right.

• RemoveStep(path, pos, step) - Removes a step at position pos.
All steps with an index equivalent or greater than pos are shifted to the left.

• UpdateStepURI(path, pos, URI) - Changes the URI of the step at position pos to URI.
path[pos].ref = URI;

• UpdateRestriction(path, pos, restriction) - Changes the restriction of a concept-step at po-
sition pos to restriction.
path.pos.restriction = restriction

Completeness of the Change-Operations:
By providing add, delete and update operations for steps every annotation path can be trans-
formed to any other annotation path. Therefore, the change-operations are complete.

5.1.3 Global Changes

A global change operation is not defined for a specific path but for a set of path. The set of
path P is typically the set of annotation path of one schema. Every global change operation
can also be implemented with a set of local change operations. Due to the fact that typically
many paths are effected by a change in the reference ontology it is valuable to have global
operations in order to achieve a compact change-log.

• UpdateGlobal(P, OldURI, NewURI) Changes all usages of OldURI to NewURI
∀s ∈ {∀p ∈ P} | s.re f = OldURI ⇒ s.re f = NewURI

5.1.4 Change Transactions

The addition and removal of steps can lead to structurally invalid annotation paths. Therefore,
multiple changes need to be made in order to achieve a structural valid annotation path. We

5

5.2. Structural Invalidation of Annotation Paths 85

propose to solve this issue by using transactions. The structural validity of a path only needs
to be guaranteed, when a transaction has finished. In order to provide transaction support we
define the following statements:

• beginTransaction(path) - Begins a transaction for the path path

• endTransaction(path) - Ends a transaction for the path path. If the path is structurally
valid, then all operations are applied. Otherwise all changes are skipped.

5.2 Structural Invalidation of Annotation Paths

In order to discuss the structural invalidation, we will first briefly recall the definition of
annotation paths: The set of all annotations of a specific schema is denoted P. Each annotation
path p ∈ P consists of a sequence of steps S. Each step s ∈ S has a reference to an ontology
element s.re f , a type s.type and an optional restriction. The type directly depends on the
referenced element in the ontology O. The ontology consists of a set of concepts C, a set of
object-properties OP and a set of datatype-properties DP and a set of individuals I. Each e ∈
{C∪OP∪DP∪ I} has a URI that uniquely identifies the ontology element. The corresponding
sets of URI’s are denoted with C.URI, OP.URI and DP.URI. The type of step is determined
by the referenced element in the ontology:

∀s ∈ S : s.re f ∈ C.URI ⇒ s.type = ConceptStep
∀s ∈ S : s.re f ∈ OP.URI ⇒ s.type = ObjectPropertyStep
∀s ∈ S : s.re f ∈ DP.URI ⇒ s.type = DatatypePropertyStep

A step can be addressed by its position in the path. The position is defined by s.pos.
The first step has the position 0. An annotation path has a length p.length that corresponds
to the number of steps. In order to form a structurally valid annotation path a number of
constraints over the sequence of steps exist.

Definition 5.2.1. Structurally Valid Annotation Path
An annotation pas p is structurally valid, if the following conditions hold for each step s of p:

• The first step (s.pos = 0) must be a ConceptStep.

• The last step (s.post = p.length− 1) must be a ConceptStep or a DatatypePropertyStep.

• An ObjectPropertyStep must only exist between two ConceptSteps.

• A ConceptStep must be followed by an ObjectPropertyStep or a DatatypePropertyStep or
nothing.

• A DatatypePropertyStep can only exist as the last step.

86 5 Structural Maintenance of Annotations

• Only a ConceptStep may have a restriction.

An annotation path that does not match these conditions is a structurally invalid annota-
tion path. Every structural invalidation of an annotation path is caused by at least one invalid
step. There are two types of invalid steps:

Definition 5.2.2. Missing-Reference Invalidation
A step s of an annotation path p is invalid due to a Missing-Reference Invalidation, iff
s.re f 6∈ O.URI

Definition 5.2.3. Wrong-Type Invalidation
A step s of an annotation path p is invalid due to a Wrong-Type Invalidation, iff:
s.re f ∈ O.URI ∧
(s.type = ConceptStep ∧ s.re f 6∈ C.URI) ∨
(s.type = ObjectPropertyStep ∧ s.re f 6∈ OP.URI) ∨
(s.type = DatatyPropertyStep ∧ s.re f 6∈ DP.URI)
The required type is defined by the structural constraints from definition 5.2.1

These constraints can directly be transformed to an algorithm that checks the structural
validity of an annotation path. The proposed algorithm in listing 5.1 returns an error-report,
that contains information about the positions and types of errors. If no error was found an
empty error-report is returned1.

1 checkStruc tVal id (annotat ionPath p , Ontology O) {
2 errorReport new ErrorReport () ;
3 f o r (i =0 ; i <=p . length ; i ++) {
4 i f (!O. isUriInOntology (p [i] . r e f)
5 errorReport (i , p [i] . re f , ’ Missing−Reference ’)
6 e l s e i f (i %2==1 and i !=p . length−1 and !O. i s O b j e c t P r o p e r t y (p [i] . r e f))
7 errorReport (i , p [i] . re f , ’Wrong−Type ’ , ’ Object−property required ’)
8 e l s e i f (i %2==0 and !O. isConcept (p [i] . r e f))
9 errorReport (i , p [i] . re f , ’Wrong−Type ’ , ’ Concept required ’)

10 }
11 i f (p . length−1%2==1 and !O. isDatatypeProperty (p [p . length −1] . r e f))
12 errorReport (i , p [i] . re f , ’Wrong−Type ’ , ’ DataType−Property required ’)
13 re turn errorReport () ;
14 }

Listing 5.1: Structural validation of an annotation path

The methods isObjectProperty(uri), isDatatypeProperty(uri) and isConcept(uri) of an on-
tology return true, if uri is an object-property/datatype-property/concept in the reference

1The depicted algorithm does not check for errors that are caused by restriction paths. This can be realized
analogously by iterating over the steps of the restrictions. In this case also references to instances must be checked.

5

5.3. Evolution Strategies for Structurally Invalid Paths 87

ontology. The method isUriInOntology(uri) returns true, if uri is defined in the reference
ontology.

5.3 Evolution Strategies for Structurally Invalid Paths

In section 5.2, we have defined when an annotation path gets structurally invalid. In order to
decide how a structurally invalid path can be repaired the reasons for the invalidation needs
to be investigated. Sources of knowledge for possible evolution strategies are the old and the
new ontology version and the change representation of chapter 4.
The evolution strategies are inspired by the evolution strategies for ontologies as proposed in
[37] and are related to the evolution strategies for RDF data that is structured by an evolving
RDF-Schema in [62].

Problem Definition: Given an annotation path pi, two succeeding versions of the reference
ontology On and On+1 and the representation of changes between On and On+1, where the
path pi is structurally valid with regard to On and pi is structurally invalid with regard to
On+1. Find a variant of p that is valid in On+1. The variant should preserve as much of the
semantics as possible.

5.3.1 Atomic Evolution Strategies for Missing-Reference-Invalidations

Every structural invalid annotation path p contains at least one invalid step s. When all invalid
steps are repaired, then p is structurally valid. A MissingRe f Invalidation of a step s in an
annotation path p is a local invalidation, where it is sufficient to replace the reference of the
step s.re f with an element that is existent in On+1. Which ontology element can be used
as a replacement depends on the type of change that occurred. Therefore, we will discuss
the possible evolution strategies for each type of change in the ontology. We describe the
strategies in form of rules. The predicate MissingRe f erenceInvalidation(?step, ?path) defines
that the step ?step is invalid in the path ?path due to a missing-reference invalidation. The
predicate changeAnnotation(?mtid,?tid) defines that the change with the id ?tid is a member of
a composite change with the id ?mtid.

Rename of Ontology Elements

If a step of a path is invalid because the URI of the referenced element has changed, then the
new URI can be used for the step:

MissingRe f erenceInvalidation(?step, ?path) ∧ rename(?tid, ?step.uri, ?to)
⇒ UpdateStepURI(?path, ?step.pos, ?to)

88 5 Structural Maintenance of Annotations

This evolution strategy is a fully semantics preserving operation, where no user-intervention
is required.

Merge of Ontology Elements

If a step is invalid because the URI of the referenced element was deleted and the delete is
associated with a merge operation, then the target of the merge can be used for the annotation.
A merge is a composite change-operation that is linked to atomic change operations by
change-annotation predicates.

MissingRe f erenceInvalidation(?step, ?path) ∧ delete(?tid, ?step.uri)
∧merge(?mtid, ? f rom, ?to) ∧ changeAnnotation(?mtid, ?tid)
⇒ UpdateStepURI(?path, ?step.pos, ?to)

This evolution strategy is a fully semantics preserving operation in the sense that only
semantics are lost that cannot be expressed in On+1. Thus, no user-intervention is required.

Split of Ontology Elements

If a step is invalid because the URI of the referenced element was deleted and the delete
is associated with a split operation, then each target of the split is a possible replacement
candidate. A split is a composite change-operation that is linked to atomic change operations
by change-annotation predicates.

MissingRe f erenceInvalidation(?step, ?path) ∧ delete(?tid, ?step.uri)
∧ split(?mtid, ? f rom, ?to) ∧ changeAnnotation(?mtid, ?tid)
⇒ UpdateStepURI(?path, ?step.pos, ?to)

In contrast to the previous strategies the given rule may return multiple different possi-
ble change-operations for the repair. Since the more general concept that was used previously
does not exist after the split operation the user needs to select a suitable operation that best
fits the semantics of the schema element. If this is not possible the user may decide to use a
parent element of the deleted one.

General Deletes

If a step is invalid because the URI of the referenced element was deleted and the delete is not
associated with a split or merge operation, then a still existing parent element in On+1 can be
used.

5

5.3. Evolution Strategies for Structurally Invalid Paths 89

A A

B B

C C

D

G

E E

I IJJ

F F

delete(G)
delete(D)
merge({I,J}, IJ)
addChild(E,IJ)

Changes(O ,O)n n+1

On On+1

Figure 5.1: Example ontology for evolution strategies for structural invalidations

MissingRe f Invalidation(?step, ?path) ∧ delete(?tid, ?step.uri)
∧!changeAnnotation(?mtid, ?tid) ∧ hasDirectParent(?step.uri, ?parent)
⇒ UpdateStepURI(?path, ?step.pos, ?parent)

This strategy exploits the fact that each instance of a subconcept is also an instance of
all its superconcepts and that any property assertion for a sub-property is also a property
assertion for all its super-properties. Thus, it is semantically correct to use a parent element, if
the child element does not exist in On+1. This strategy returns a more general annotation and
it should be reviewed by the user. The predicate hasDirectParent(?step.uri, ?parent) returns
all direct parents of step.uri that are still existent in On+1. This includes that possibly no
replacement can be found or that multiple elements may be returned.

5.3.2 Composite Evolution Strategies for Missing-Reference-Invalidations

We have defined atomic evolution strategies for structural invalidations of steps in subsection
5.3.1. They could either provide direct replacements or they provided more general ontology
elements for the invalid step. The selection of a more general replacement can be direct, if the
direct parent still exists or it can be indirect, if the direct parent was itself subject of a change.
As a result the atomic strategies need to be combined to provide a suitable replacement for an
invalid step. We will first provide an example for such a scenario.

90 5 Structural Maintenance of Annotations

A fragment of the class hierarchy of an example ontology with two versions is shown in
figure 5.1. We assume the annotation path /X/has/G/has/Z. This annotation is structurally valid
in On, but structurally invalid in On+1. The cause for the invalidation is the missing concept
G. Since G was deleted and this delete is not associated with a composite operation we need
to find an existing parent of G in On+1. Unfortunately, the former parents of G, D and I
are also not existent in On+1. The parent B of D exists and can be used as a replacement.
In addition I was merged with J and is now called I J in On+1. We get the following set of
possible replacements for G:

1. Replace G with I J. (1 Abstraction)

2. Replace G with B. (2 Abstractions)

3. Replace G with F. (2 Abstractions)

4. Replace G with A. (3 Abstractions)

5. Replace G with C. (3 Abstractions)

Since we assume that each abstraction reduces the specificity of the annotation we should
use option 1, which provides a structurally valid solution with a minimum number of abstrac-
tions.

An Algorithm for the Repair of Missing Reference Invalidations

The previous example has shown that the repair of an invalid step may require a combination
of atomic evolution strategies. For example, when an ontology element was deleted and the
direct parent of it was merged, we need to use the target of the merge as a replacement for
the deleted concept. In addition multiple solutions can exist. The quality of a solution can be
ranked by the number of required abstraction steps.

Problem Definition: Given an existing ontology element i ∈ On that is referenced from
a structurally invalid step in On+1 we need to find the set of replacement candidates J of i.
Each replacement j ∈ J has a value j.val that defines the replacement target in On+1 and an
indicator of the number of abstractions j.abstr. The best replacement candidates are those with
a minimal value of j.abstr.

We model the search space in form of a tree, which we call the replacement-tree, where the
missing element i forms the root. The children of the root elements are the parent elements of i
∈ On. In order to find all replacement candidates we can simply perform a breath first traversal
over the replacement-tree starting at the root i and check each node for possible replacements
according to the atomic evolution strategies. Whenever a solution is found we can add it to
the result. The parameter j.abstr is equivalent to the level of the tree, where the solution was
found. The corresponding algorithm for invalid concept steps is shown in listing 5.2.
The algorithm for property-steps can be implemented analogously. The algorithm gets the

5

5.3. Evolution Strategies for Structurally Invalid Paths 91

invalid step, the old and the new ontology version and the change representation as input.
The parameter k specifies the maximum number of results. By using a breath first traversal it
is guaranteed that the best k replacements are returned.
The key method getReplacementConcept() for this algorithm is shown in listing 5.3. The method
basically checks the applicability of the proposed atomic evolution strategies. When such a
strategy is applicable the possible replacements are returned.

1 getReplacements (s tep s , Ontology o , Ontology on , Changes C, i n t k)
2 i n t f = 0 ;
3 rp = CreateReplacementTree (s tep s , o , l) ;
4 breath− f i r s t t r a v e r s a l over a l l nodes n of rp {
5 candidate = getReplacementConcept (s , n , o , on ,C) ;
6 i f (candidate != OWL:Thing) {
7 r e s u l t . add (candidate , n . l e v e l) ;
8 f ++;
9 }

10 i f (f > k) break ;
11 }
12 re turn r e s u l t ;

Listing 5.2: Algorithm for the generation of candidate replacements for invalid concept-steps

The method uses the helper functions hasConcept, hasRenameC, hasMergeC and hasSplitC. The
function hasConcept returns true if the new version contains a concept with the given URI. The
functions hasRenameC, hasMergeC and hasSplitC return true, if the provided URI was subject to
a rename, a merge or a split. If this was the case the corresponding getRenameC, getMergeC od
getSplitC are used to get the corresponding element of the new ontology version. In case of
getSplitC a set of solutions is returned. When no replacement is possible null is returned.

1 getReplacementConcept (s tep s , node n , Ontology o , Ontology on , Changes C) {
2 i f (s . type==concept) {
3 i f (on . hasConcept (s . r e f))
4 re turn s . r e f
5 e l s e i f (C . hasRenameC (s . r e f))
6 re turn C. getRename (s . r e f)
7 e l s e i f (C . hasMergeC (s . r e f))
8 re turn C. getMergeTarget (s . r e f)
9 e l s e i f (C . hasSpl i tC (s . r e f))

10 re turn C. g e t S p l i t T a r g e t s (s . r e f)
11 e l s e re turn n u l l
12 }
13 re turn ’wrong type ’ ;
14 } }

Listing 5.3: Definition of getReplacementConcept()

92 5 Structural Maintenance of Annotations

Repairing an Invalid Path

We have proposed a method to find and rank possible replacements for steps that got invalid
due to missing reference invalidations. Given a path, with only one invalidation, where the
invalidation has the type missing-reference we can use the proposed algorithm to compute a
number of replacement candidates. We can then generate a new annotation path for each re-
placement candidate. Each such path is structurally valid. In order to help the user to select an
appropriate replacement path we can also validate it logically and only present logically valid
solutions. If the user is asked can also depend on the quality of the solutions. For example
a user-review is not required, when no abstraction step was necessary and the corresponding
atomic evolution strategy returned only one solution.

We will now discuss the problem, when multiple steps of a path are invalid due to a
missing-reference invalidation.

Given a path p with a set of invalid steps I. Each invalid step i ∈ I is invalid due to a
missing-reference invalidation. In addition we have a set of ranked possible replacements for
each invalid step i.REP. Each element of i.REP is a tuple (replacement,abstr). We want to find a
set of the best k candidate path P such that each p in P is structurally valid and the number of
abstractions for each replaced step is minimized.

The set of all candidate solution path is defined by CAND = i1.REP × i2.REP ... × in.REP.
Each candidate ∈ CAND can be ranked according to the sum of all abstr values. Thus, we can
generate the first k solutions that use replacements with minimal abstraction levels. The result
can additionally be checked for logical invalidations and can then be presented to the user. If
no abstractions were required for a valid solution and only atomic strategies that require no
user intervention were used to generate the best result, then the user-review can be omitted.

5.3.3 Evolution Strategies for Wrong-Type Invalidations

The previous algorithm could be used to find a suitable replacement for paths with miss-
ing reference invalidations. The general idea is that the type of the URI was not changed.
In case of wrong-type invalidations this is different. For example something that was mod-
eled as datatype-property before is now modeled as an object-property. In case of annotation
maintenance we always assume that an annotation path was valid in the previous ontology
version. This means the structural constraints were met in the old ontology version. Therefore,
a wrong-type invalidation is only possible in the following cases2:

1. Concept to object-property: s.uri ∈ On.C.URI ∧ s.uri ∈ On+1.OP.URI

2. Concept to datatype-property: s.uri ∈ On.C.URI ∧ s.uri ∈ On+1.DP.URI

2We assume that the URI was not changed, but the type of element in the ontology has changed. One might argue
that when such a modeling change occurs, then also the URIs will change. If we suppose that the URI changes, then
additional complex changes that represent the different cases are required in order to express such modeling changes.

5

5.3. Evolution Strategies for Structurally Invalid Paths 93

3. Object-property to concept: s.uri ∈ On.OP.URI ∧ s.uri ∈ On+1.C.URI

4. Object-property to datatype-property: s.uri ∈ On.OP.URI ∧ s.uri ∈ On+1.DP.URI

5. Datatype-property to object-property. s.uri ∈ On.DP.URI ∧ s.uri ∈ On+1.OP.URI

6. Datatype-property to concept. s.uri ∈ On.DP.URI ∧ s.uri ∈ On+1.C.URI

7. Concept to instance: s.uri ∈ On.C.URI ∧ s.uri ∈ On+1.I.URI

8. Instance to concept: s.uri ∈ On.I.URI ∧ s.uri ∈ On+1.C.URI

9. Object-property to instance: s.uri ∈ On.OP.URI ∧ s.uri ∈ On+1.I.URI

10. Datatype-property to instance: s.uri ∈ On.DP.URI ∧ s.uri ∈ On+1.I.URI

11. Instance to object-property: s.uri ∈ On.I.URI ∧ s.uri ∈ On+1.OP.URI

12. Instance to datatype-property: s.uri ∈ On.I.URI ∧ s.uri ∈ On+1.DP.URI

This list is complete because each relevant ontology element of an annotation can be
changed to any other type of ontology element. In contrast to the missing-reference invali-
dation the semantics of wrong-type invalidations are less strict and their resolution typically
requires human intervention. Therefore, we will concentrate on a limited set of transitions
between types that have strict semantics: (5) datatype-property to object-property, (4) object-
property to datatype-property, (7) concept to instance and (8) instance to concept.

Datatype-Property to Object-Property

According to the old ontology version the last step referred to a datatype-property. In the new
ontology version an object-property is referenced. In order to repair this structural problem
we can use the required object-property as it is. But we need to add a new concept-step to
comply with the annotation method. According to the new ontology version any concept that
is in the range of the object-property and that is not disjoint from the range of a restriction on
that property on the the previous concept-step can be used. Obviously the user needs to select
one concept out of a list of possible concepts. In order to get a structurally valid annotation
concept also the usage of Thing is possible.

Object-Property to Datatype-Property

In this case a combination of an object-property and a concept at the end of an annotation path
gets invalid because the object-property is a datatype-property in the new ontology version.
Thus, only the last step, which must be a concept-step needs to be removed. The new last step
refers to the datatype-property. This solution can only be applied, when the changed-property
is at the last position of the annotation path.

94 5 Structural Maintenance of Annotations

Concept to Instance

The reference to an instance in an annotation path is only allowed in the restriction of concept-
steps. We therefore, need to find a replacement for the missing concept and add a restriction
for the specific individual. Given a uri c that refers to a concept C in On and to an instance I in
On+1 we can replace the uri with a concept C2 of On+1, where I is an instance of C2. In order
to preserve the semantics a restriction on that concept in the annotation path for the individual
I must be created.

Instance to Concept

In this case there is a restriction on a concept step to an instance that is now a concept. This can
be repaired by replacing the concept of the concept-step with the uri of the former individual
and the removal of the individual in the restriction.

5.4 Annotation Maintenance using Mapping Composition

In the last sections we have shown how a structurally invalid annotation path can be repaired,
when both ontology versions and a representation of changes are given. This task requires
partly human intervention, which should be minimized as much as possible. Since semantic
annotations can be used to match schemas of different partners (see chapter 3) those matches
can be an additional source of knowledge. This leads to the following problem:

Given an invalid annotation path p of some element e1 of some schema S1 and a set of
schemas S. Each schema s in S is annotated with a set of schema annotations s.A. Each
schema annotation sa ∈ s.A consists of a set of annotation path sa.P and has a corresponding
version of the reference ontology sa.O. We need to find an equivalent class match between
p ∈ S1 and some other annotation path p2 of some other schema S2, where p2 ∈ sa1.P and
{sa1, sa2} ⊆ S2.A and sa1.O = On and sa2.O = On+1. When such a match between p and p2
exists, then there is a schema element e2 that is annotated with p2 and the annotation p3 ∈
sa2.P of e2 is a replacement candidate p′ for p. The scenario is shown graphically in figure 5.2.

The match between p and p2 is based on the standard matching methods from chapter 3.
This annotation upgrade method is based on the ideas of mapping composition [2, 34]. We
suppose that it allows a dramatic reduction of manual annotation maintenance effort since
theoretically each annotation with equivalent semantics needs to be maintained only once.
In addition such a cooperative annotation maintenance approach has the advantage that all
partners will use the same replacement for equivalent invalid annotations, which reduces the
differences between annotations for semantically equivalent entities.

5

5.5. Conclusion 95

s1 s2

On On+1

p

p‘

p2

p3

matches
e1 e2

candidate

Figure 5.2: Annotation maintenance using mapping-composition

5.5 Conclusion

In this chapter we have first introduced a complete set of change operations for the modifica-
tion of annotation paths. Those change operations can be used to repair annotation paths that
got invalid due to ontology changes. Structural invalidations occur, when named entities of
the ontology that are referenced from an annotation path step do not exist in the new ontology
version or when the type of the referenced ontology element has changed. We have proposed
an algorithm for the detection of such invalidations. An invalid path consists of at least one
invalid step. An invalid step that references a missing element can be repaired by replacing the
referenced element with an existing element of the new ontology version. Such a replacement
can be computed by evaluating the changes between the old an the new ontology version and
may require to replace a more specific element of the old ontology version with a less specific
element of the new ontology version. This property is used to rank possible replacements. The
overall goal is to find replacements with minimal semantic changes. When the possible repairs
for each invalid step of a path are computed those solutions can be used to propose replace-
ment candidates for the complete annotation path. We propose that if no fully information
preserving replacement could be found, the user should review a set of k best annotation path
repair candidates and select an appropriate one. The set of best repairs are those with a mini-
mal overall number of abstractions for all replaced steps. The set of possible replacement path
can also be filtered by first checking its logical validity, which is discussed in the next chapter.
We have finally introduced an additional annotation maintenance scenario in a collaborative
environment that limits the human intervention by using mapping composition.

96 5 Structural Maintenance of Annotations

6

Chapter6
Logical Invalidation of Annotations

1We have discussed the structural invalidation and maintenance of annotation in the last chap-
ter. Basically an annotation path is structurally invalid, if it does not fulfill the structural
requirements of the annotation method. The result is that the annotation path cannot be
transformed to a structurally valid OWL concept. As a consequence every structurally valid
annotation path can be transformed to an OWL concept but it is not guaranteed that this is a
satisfiable concept with regard to the reference ontology.

There are two scenarios, where annotations need to be validated against the reference
ontology: Annotation creation and annotation maintenance. In both cases the task requires
additional domain-knowledge: In case of the creation the annotator needs to define suitable
and valid annotations for the schema elements. In case of annotation maintenance the user
needs to upgrade invalid annotations to annotations that are valid with the new ontology
version. Because ontologies are typically refined during evolution the old ontology version
can be seen as an under-specification of the current real-world domain. As a consequence the
maintenance of the annotations is a non-trivial task, where additional domain knowledge is
required. Thus, the task of repairing logically invalid annotation needs to be performed by
human experts. Nevertheless, those experts need support to find suitable solutions. In this
chapter we will define invalidation-types and propose black-box methods and algorithms that
can precisely track those invalidations in annotation paths. This information can be used by
a user to repair the path expressions. We concentrate on black-box approaches because one
major usage scenario of semantic annotations are heterogeneous information systems. In such
a scenario it is not realistic to enforce the usage of a specific reasoner.

1Parts of this chapter have been published in [59]

97

98 6 Logical Invalidation of Annotations

6.1 Annotation Method

In order to discuss why an annotation can be logically invalid we will first briefly recall the
annotation method from chapter 2. An annotation of some XML-Schema element or type is a
path expression that consists of a sequence of steps. Each step corresponds to either a prop-
erty or a concept of the reference ontology. Structurally valid annotation path expressions can
automatically be transformed to OWL2 [75] concepts. Such concepts are used to represent the
semantics of the annotated element. We will describe this with an example:
The annotation path p = Order/billTo/Buyer[Mr_Smith]/hasCountry/Country could be used to an-
notate a country element for some XML-Schema for order documents. It describes a subconcept
of a country that has an inverse relation hasCountry to some Buyer that has an inverse billTo
relation to some Order. The buyer has a restriction to state that the Buyer is a specific buyer
with the name Mr. Smith. The corresponding class definition p.c is shown in listing 6.1.

1 C l a s s : Order/ b i l l T o /Buyer [Mr_Smith]/ hasCountry/Country
2 Equiva lentClasses (
3 ConceptAnnotation and Country and inv
4 (hasCountry) some
5 (Buyer and { Mr_Smith } and inv (b i l l T o) some (Order)
6))

Listing 6.1: Representation of an annotation path in OWL

In order to transform a structurally valid annotation path expression to an OWL concept
the following mappings apply:

• Concept-Steps are directly mapped to concepts.

• Restrictions on Concept-Steps are mapped to enumerated classes or restrictions over the
corresponding concept.

• Object-property-Steps are mapped to inverse some values from restrictions between concepts
on that specific property.

• Datatype-Property-Steps are mapped to some values from restrictions of the last concept step
on that specific datatype-property.

The annotation method allows different types of annotations, that we will now define in
order to describe the possible invalidations for each type in the following sections.

• Simple Concept Annotations consists of only one concept.

• Simple Datatype Annotations consists of only one concept and one datatype-property.

• 3-Step Concept Annotations consists of a concept, an object-property and another concept.

• General Annotations are annotation paths that consists of more than 3 steps.

6

6.2. Logical Invalidation of Annotation Paths 99

6.2 Logical Invalidation of Annotation Paths

An annotation path is logically invalid, if the corresponding annotation concept is not sat-
isfiable in the reference ontology. Thus, the detection of logically invalid annotations is a
classical reasoning task. The root concept of OWL is Thing. Any subconcept of this concept
is satisfiable in the ontology. A satisfiable concept can contain individuals. Concepts that are
not subclasses of Thing are not satisfiable and are subclasses of the concept Nothing, which is
the complement of Thing.

Definition 6.2.1. Logical Invalidation of an Annotation: A structurally valid annotation
path p is logically invalid if the corresponding annotation concept p.c is unsatisfiable in the
reference Ontology O. O

⋃
p.c → p.c 6v Thing

Why can’t we use standard tools for validation and repair such as [77] or [89]? First, we
want to determine which steps of the annotation path are responsible for the invalidation
rather than determining a set of axioms of the (extended) ontology causing the invalidation.
Second, repairs can only change annotation paths, and not axioms of the ontology. For debug-
ging annotations we have the following requirements:

• The ontology is assumed to be consistent and therefore, free of contradictions before the
annotation concept is added.

• The structure of the annotation concepts is strictly defined by the annotation method.

• Repairs can change annotation path expression but not the ontology.

• In case of annotation maintenance we require that the annotation concept was valid in
the previous ontology version.

Therefore, we need to find the error in the steps of the annotations rather than in their OWL
representation. This limits the usefulness of standard OWL debugging methods (see section
6.6). If an ontology evolves, annotation maintenance means to identify those annotation paths
which became logically invalid due to the changes in the ontology and to identify those steps
in the annotation path which cause the invalidation. An expert then can repair the invalid
annotation paths efficiently using the information about the cause of the invalidation.

In OWL logical contradictions boil down to a limited set of contradictions [77]:

• Atomic - An individual belongs to a class and its complement.

• Cardinality - An individual has a max cardinality restriction but is related to more dis-
tinct individuals.

• Datatype - A literal value violates the (global or local) range restriction of a datatype-
property.

100 6 Logical Invalidation of Annotations

These clashes also apply for unsatisfiable classes. Thus, for example a class is unsatisfiable
if it is defined as an intersection with its complement or if it has contradicting cardinality- or
datatype-restrictions. Of course such invalidations can be produced by non-local effects. In
the next sections we discuss how the different annotation types can be logically invalid.

6.2.1 Invalidation of Simple Concept Annotations

A simple concept annotation consists of only one concept. Thus, a concept with the name
pre f ix + conceptUri is generated, where prefix is some unique identifier that is not used in the
ontology O, with the equivalent class definition (ConceptAnnotation and conceptUri).

Theorem 6.2.1. A simple concept annotation that is structurally valid is also logically valid.

Proof. We require that all concepts of the reference ontology are satisfiable. Thus, there is only
one case, where the union of ConceptAnnotation and conceptURI can result in an unsatisfiable
concept: The class with the URI ConceptAnnotation is disjoint from the concept with the URI
conceptURI. This is impossible because the primitive concept ConceptAnnotation does not
exist in the reference ontology before the annotations are added. Thus, there cannot be an
axiom in the ontology that contradicts with it.

6.2.2 Invalidation of Simple Datatype Annotations:

A simple datatype annotation of the form /c/datatypeProperty consists of a concept and a
restriction over some datatype-property of the form: (datatypeAnnotation and c and datatype-
Property some rdf:Literal).

Theorem 6.2.2. There exists no invalid simple datatype annotation that does not violate one
of the following conditions:

1. Invalid-domain: The intersection of the domain of the property with the concept is not
a subclass of OWL : Thing.
c u domain(datatypeProperty) 6v Thing

2. Invalid-restriction: The intersection of the concept and the restriction over the datatype-
property is not a subclass of OWL : Thing.
c and datatypeProperty some Literal 6v Thing

Proof. Obviously, case 2 of an invalidation is equivalent to the satisfiability-check of the whole
annotation concept. There is only one additional case for an invalidation where the concept
with the URI datatypeAnnotation is disjoint from c, which is impossible in analogy to theorem
6.2.1. Thus, every logically invalid simple datatype annotation is captured.

6

6.2. Logical Invalidation of Annotation Paths 101

According to theorem 6.2.2 every simple datatype annotation that is invalid due to an
invalid-domain is also invalid due to an invalid-restriction. Thus, in order to detect the cause
of the error in more detail we need to investigate the reasons for the invalid restriction. This
can be realized by additionally checking the first case. In addition the restriction clash is not
yet atomic. In OWL there are the following scenarios for invalid restrictions over datatype-
properties:

1. The datatype of the restriction does not comply with a datatype that is required by an
existing restriction in O.

2. There is a cardinality clash between the existential restriction of the annotation path and
an existing restriction in O.

Theorem 6.2.3. An invalidation of a simple datatype annotation due to a conflicting datatype
restriction is impossible.

Proof. A contradicting datatype must be disjoint from the datatype in the existential restriction.
This is impossible because every datatype is a subtype of rdfs:literal, which is used for the
existential restriction in the annotation concept. No subtype can be disjoint from its supertype.

Cardinality clashes are possible, when there is a restriction on the class (c u
datatypeProperty) of the form: datatypeProperty max n type, where type is rd f s : Literal
or any subtype of it.

6.2.3 Invalidation of 3-Step Concept Annotations

A 3-step concept annotation is a triple of the form concept/property/otherconcept. It is repre-
sented as an OWL equivalent class expression otherconcept and inv (property) some concept.
Such an expression can be invalid due to domain-invalidation, range-invalidation and restriction-
invalidation.

Definition 6.2.2. Domain-Invalidation:
An annotation triple of the form concept/Property/otherconcept is unsatisfiable due to a
domain-invalidation, iff: domain(Property) u concept 6v Thing

Definition 6.2.3. Range-Invalidation
An annotation triple of the form concept/Property/otherconcept is unsatisfiable due to a
range-invalidation, iff: range(Property) u otherconcept 6v Thing

102 6 Logical Invalidation of Annotations

Definition 6.2.4. Restriction-Invalidation:
An annotation triple of the form concept/Property/otherconcept is unsatisfiable due to a
restriction-invalidation, iff: otherconcept u inv (Property) some concept 6v Thing

Theorem 6.2.4. There exists no invalid 3-step concept annotation that does not introduce a
domain-invalidation, range-invalidation or restriction-invalidation.

Proof. A restriction-invalidation is defined as otherconcept u inv (hasProperty) some concept
6v Thing. This is equivalent to the satisfiability requirement for the whole annotation path
because the intersection of otherconcept and ConceptAnnotation cannot result in a clash (see
proof of theorem 6.2.1). Thus, there exist no invalid 3-step annotations that are not captured
by the enumerated invalidations.

While the domain or range invalidations are already atomic there can be different causes
for invalid restrictions: A restriction can be invalid because the range of the restriction is
disjoint from another allvaluesFrom restriction on concept or it can be invalid because there
is a cardinality restriction on concept of the form property max n otherconcept. Therefore, the
invalid-restriction problem can be divided into invalid-value-restriction and invalid-cardinality-
restriction.

OWL2 allows the definition of object properties to be functional, inverse functional, tran-
sitive, symmetric, asymmetric, reflexive, and irreflexive. Since the existence of the object-
property is defined by the existential quantification of the inverse of the property these char-
acteristics can influence the satisfiability of the annotation. For example, given an annotation
path p = /A/hasB/B, the path is invalid, if hasB is defined as inverse functional and B has an
inverse hasB restriction in O to some other class that is disjoint from A.
We can summarize that a 3-step concept annotation can be invalid because of the restrictions that
are formulated over the corresponding annotation concept. Definition 6.2.4 is sufficient but the
root cause can be found in property characteristics or cardinality or value clashes.

6.3 Invalidation of General Annotations

In the last section we defined all local invalidations that can occur in annotations that consists
of 3 steps. A general annotation consists of a sequence of 3-step concept annotations called
triples. The last step can be a 3-step concept annotation or a simple datatype annotation. We
will first show that all local invalidation types also apply to general concept annotations and
then discuss additional kinds of invalidations that are only possible in general annotations.

6

6.3. Invalidation of General Annotations 103

6.3.1 Invalidation of General Annotation due to Local Invalidations

Definition 6.3.1. Local-Invalidations: The invalidation types domain-invalidation (see def. 6.2.2),
range-invalidation (see def. 6.2.3) and restriction-invalidation (see def. 6.2.4) are local invalida-
tions, that are defined in the context of a triple.

Theorem 6.3.1. A locally invalid 3-step annotation cannot get valid, when it occurs as a triple
in a general annotation path.

Proof. A general annotation path has the form: /c1/p2/c3/.../cn−2/pn1 /cn/. We now assume
that there exits a triple Cinv = cx/py/cz, in the path that is invalid, when it is inspected
separately (local invalidation), but the entire annotation concept ... c−2/p−1/cx/py/cz/p1/c2

... is valid. This implies that either cx or cz were implicitly changed to classes that are not still
causing local invalidations in Cinv. When the triple Cinv is added to the annotation concept
this is realized by an expression of the form:
... c2 and (inv) p1 some (cz and inv (py) some (cx and p−1 some ...
Thus, zx is implicitly replaced with an intersection of zx and (p1 some ...) that we now call zx2.
cz gets implicitly replaced with cz and (range (p1) that we now call cz2. In order to achieve a
satisfiable triple Cinv in p, cx2 must not be a subclass of cx or cz2 must not be a subclass of cz.
This is a contradiction because they are logically subclasses of cx and cz.

Theorem 6.3.2. A general concept annotation that contains an invalid triple is itself logically
invalid.

Proof. A general concept annotation path consists of triples: t1/t2/t3/.../tn. We will now
show via induction that as soon as one of its triples is unsatisfiable, the whole annotation
concept is unsatisfiable. Beginning with an annotation p1 that only consists of tn. If tn is itself
unsatisfiable, then the whole path cannot be satisfiable because it is represented as a subclass
of tn in p1.c. We now assume that p1 is satisfiable and we add tn−1, which is supposed to
be unsatisfiable. The addition renders the whole annotation path unsatisfiable because the
connection between pn and tn−1 is represented in form of an existential restriction. This step
can be repeated by adding an unsatisfiable triple to a longer and longer valid path, until t1 is
reached. Therefore, if any triple of a general concept annotation is locally invalid the whole
annotation concept must be logically invalid.

As a conclusion all previously discussed local invalidations also apply to general annota-
tions. Additionally there are invalidations that only occur in general annotations: direct-triple-
disjointness and arbitrary non local invalidations.

104 6 Logical Invalidation of Annotations

Customer/sendsOrder/Document/hasInvoiceNumber/InvoiceNumber

Figure 6.1: Example of direct-triple-disjointness

6.3.2 Direct-Triple-Disjointness

One kind of invalidation that does not exist for 3-step annotations can be caused by the
concatenation of two annotation triples. This means the concept that is implicitly created by
the first triple is disjoint from the concept which is required by the second triple. An example
for such a scenario is shown in Figure 6.1. The corresponding reference ontology is shown in
listing 6.2.

1 Order isA Document
2 Invoice isA Document
3 D i s j o i n t (Order , Invoice)
4 Domain (SendsOrder) = Customer
5 Range (SendsOrder) = Order
6 Domain (hasInvoiceNumber) = Invoice
7 Range (hasInvoiceNumber) = InvoiceNumber

Listing 6.2: Example ontology for direct-triple-disjointness invalidations

In Customer/sendsOrder/Document/hasInvoiceNumber/InvoiceNumber each triple is valid indi-
vidually, but the combination of the triples leads to an unsatisfiable concept. The reason for
this invalidation is that the subclass of Document that is produced by the range of sendsOrder
in the first triple is disjoint from the subclass of Document that is produced by the domain of
hasInvoiceNumber in the second triple.

Theorem 6.3.3. Direct-Triple-Disjointness
An annotation path p = /t1/.../tn/ is invalid, if there exist two logically valid neigh-
bored triples tn = cn/pn/cm and tm = cm/pm/cm+1, where range(pn) u restriction(cn, pn) u
domain(pm) u cm 6v Thing.

Proof. The intersection class range(pn) u restriction(cn, pn) u domain(pm) u cm describes the
implicit concept between two annotation triples, that is responsible for the concatenation of
the triples. If this intersection concept is unsatisfiable any class with an existential restriction
for this concept becomes unsatisfiable.

6

6.3. Invalidation of General Annotations 105

6.3.3 Non-Local Invalidations

Local- and direct-triple-disjointness invalidations can be located precisely. That means the
step in the path that causes the invalidation can be annotated with the type of the clash and
the reason for the invalidation. This can be valuable information for a user who has to repair
the annotation path. In case of general annotation paths which consist of two or more triples
additional invalidations can occur which are not necessarily induced by neighboring triples.
We will now first present an example in listing 6.3 and then define the problem in general.

1 Class (BusinessCustomer)
2 Class (Order) , Class (BusinessOrder) , Class (PrivateOrder)
3 Class (I t e m l i s t)
4 Class (Pr ivateProduct) , Class (BusinessProduct)
5 Class (P r i c e)
6 Class (ClassMyAnnotation)
7 ObjectProperty (sends)
8 ObjectProperty (conta ins)
9 ObjectProperty (has)

10 ObjectProperty (hasPr ice)
11 EquivalentClass (BusinessCustomer ,
12 BusinessCustomer and sends only BusinessOrder)
13 EquivalentClass (BusinessOrder , BusinessOrder and has only
14 (I t e m l i s t and conta ins only BusinessProduct))
15 EquivalentClass (MyAnnotation , P r i c e and inv (hasPr ice) some
16 (Pr ivateProduct and inv (conta ins) some
17 (I t e m l i s t and inv (has) some
18 (Order and inv
19 (sends) some BusinessCustomer))))
20 d i s j o i n t (BusinessOrder , PrivateOrder)
21 d i s j o i n t (BusinessProduct , Pr ivateProduct)

Listing 6.3: A non local invalidation

The example contains the annotation concept MyAnnotation that represents the path Busi-
nessCustomer/sends/Order/has/Itemlist/contains/PrivateProduct /hasPrice/Price.
The annotation concept is free of local- or direct-triple-disjointness invalidations. Nevertheless,
it is logically invalid because according to the ontology, business customers must only send
business orders and business orders must only contain business products. Business products
are disjoint from private products. This renders the whole annotation path unsatisfiable. Now
our goal is to find the steps in the path that are responsible for the invalidation. In this case
the steps that are responsible for the clash are:
BusinessCustomer/sends/Order/has/Itemlist/contains/PrivateProduct.

106 6 Logical Invalidation of Annotations

To define such invalidations we first introduce a normalized representation form of an
annotation concept.

Definition 6.3.2. Normalized Annotation Concept
An annotation path p = /c1/p2/c3/...cn−2/pn−1/cn/ is represented as an annotation concept
p.c = cn and inv (pn−1) some (cn−2 ... and inv (p2 some c1) ...). This annotation concept uses
nested anonymous concepts. In contrast a normalized annotation concept of p.c uses named
concepts of the form:

p.c = Ac0 = cn and inv (pn−1) some Ac1

Ac1 = cn−2 and inv (pn−3) some Ac2

Ac2 = cn−4 and inv (pn−5) some Ac3

...
Acj = c3 and inv (p2) some c1

Definition 6.3.3. Chain of Restrictions of an Annotation Path.
A chain of restrictions of a normalized annotation concept p.c of an annotation path p is any
set of succeeding named concepts Acx .. Acx+n of p.c, where n ≥ 1 ∧ x ≥ 0 ∧ x + n < |p.c| − 1.

Theorem 6.3.4. Non Local Invalidations When a path is invalid and it is free of local and direct-
triple-disjointness invalidations, then there must exist at least one sub-path of two or more triples that
conflicts with the ontology.

Proof-Sketch: Given a logically invalid annotation path pinv that is free of local- and
direct-triple-disjointness invalidations of m triples of the form /t1/../tm. From the absence
of local invalidations follows that each triple t ∈ pinv is valid separately. From the absence
of intra-triple-disjointness invalidations follows that the intermediate concept that is build by
every neighbored pair of triples is satisfiable. Thus, the unsatisfiability of pinv cannot have a
local reason. Non-local invalidations are induced by chains of restrictions that conflict with
the reference ontology. Each chain of restriction of an annotation path can also be represented
as a sub-path of pinv.

The discussed properties can be used to define and detect the minimal sub-path(s) of a
logically invalid path that is responsible for the invalidation.

Definition 6.3.4. Minimal Invalid Sub-path (MIS): An invalid sub-path ps that is free of local or triple
disjointness invalidations of an annotation path p is minimal, iff the removal of the first or last triple of
ps yields a satisfiable concept of ps.concept in O.

Before we proceed with an algorithm for the detection of MIS in section 6.3.4 we will now
discuss which OWL constructs / patterns can cause non local invalidations.

6

6.3. Invalidation of General Annotations 107

Chain of Restrictions

There is is a chain of restrictions defined on concepts in O that produces a clash with the chain
of restrictions of the MIS. One case of a chain of restrictions are nested concept definitions.
We have already provided an example in listing 6.3. Of course such an invalidation can also
be produced indirectly by named classes as shown in listing 6.4. In this case the annotation
path A/hasB/B/hasC/C/hasD/D gets invalid because according to the ontology C may only have
an inverse property hasC to N, and N may only have an inverse property hasB to E and E is
disjoint from A, which is used in the annotation.
In the previous examples we have assumed that the concept that produces the clash is
restricted with restrictions over inverse properties. In addition such a restriction chain can
also be constructed in the reverse direction using non inverse properties. An example for
such an invalidation is shown in listing 6.5. In this example the restriction on A requires
A to have only a chain where the end of the chain is Z. Our annotation path ends with D,
which is disjoint from Z. Thus, we would want to mark A and D to be responsible for the clash.

1 Class (A) , Class (B) , Class (C) , Class (D) , Class (E) , Class (N)
2 Class (A/hasB/B/hasC/C/hasD/D)
3 ObjectProperty (hasB)
4 ObjectProperty (hasC)
5 ObjectProperty (hasD)
6 EquivalentClass (C, C and inv (hasC) only (N))
7 EquivalentClass (N, N and inv (hasB) only (E))
8 EquivalentClass (A/hasB/B/hasC/C/hasD/D, D and inv (hasD)
9 some (C and inv (hasC) some (B and inv hasB some A)))

10 d i s j o i n t (A, E)

Listing 6.4: Example ontology for an indirect restriction chain

1 Class (A) , Class (B) , Class (C) , Class (D) , Class (Z)
2 Class (A/hasB/B/hasC/C/hasD/D)
3 ObjectProperty (hasB)
4 ObjectProperty (hasC)
5 ObjectProperty (hasD)
6 EquivalentClass (A and hasB only (B and hasC only
7 (C and hasD only Z)
8 EquivalentClass (A/hasB/B/hasC/C/hasD/D, D and inv (hasD)
9 some (C and inv (hasC) some (B and inv hasB some A)))

10 d i s j o i n t (A, Z)

Listing 6.5: Example ontology for a non local invalidation with a non-inverse-chain

108 6 Logical Invalidation of Annotations

Of course such a clash can also be produced by using an indirect restriction chain using
named concepts as shown in listing 6.6.

1 Class (A) , Class (B) , Class (C) , Class (D) , Class (N) , Class (Z)
2 Class (A/hasB/B/hasC/C/hasD/D)
3 ObjectProperty (hasB)
4 ObjectProperty (hasC)
5 ObjectProperty (hasD)
6 EquivalentClass (A and hasB only N)
7 EquivalentClass (N and hasC only M)
8 EquivalentClass (M and hasD only Z)
9 EquivalentClass (A/hasB/B/hasC/C/hasD/D, D and inv (hasD)

10 some (C and inv (hasC) some (B and inv hasB some A)))
11 d i s j o i n t (A, Z)

Listing 6.6: Example ontology for a non local invalidation with an indirect non-inverse-chain

Transitive Properties

Transitive properties in a MIS can result in a clash, when some class in the MIS has a
restriction that does not allow to have a property assertion to the inferred class. An example
for such an invalidation is provided in listing 6.7.

1 Class (A) , Class (B) , Class (C) , Class (D)
2 Class (A/hasB/B/hasC/C/hasD/D)
3 ObjectProperty (has)
4 t r a n s i t i v e (has)
5 EquivalentClass (D and inv (has) only C)
6 EquivalentClass (A/hasB/B/hasC/C/hasD/D, D and inv (has)
7 some (C and inv (has) some (B and inv (has) some A)))
8 d i s j o i n t (C, B)

Listing 6.7: Example ontology for a MIS that is caused by transitive properties

The annotation concept of the annotation path A/has/B/has/C/has/D gets unsatisfiable
due to the transitivity of the property has. The transitivity has the consequence, that D gets an
inverse property definition for has to B and A implicitly. Because D may only have an inverse
relation has to C the annotation concept gets unsatisfiable.
This example also showed that even an annotation path that consists of only 2 triples can get
invalid because of a non local clash. Of course we can also construct an example with a longer
transitive chain, where the error in introduced at a triple that is not directly connected.

6

6.3. Invalidation of General Annotations 109

OWL Property Chains

OWL2 allows the definition of property chains which can also produce non-local clashes. A
property chain has the following form p1 o p2 –> p3. It expresses that if there is a chain where
some individual has a property p1 to another individual i1 and this individual has a property
p2 to an individual i2, then the individual has the property p3 on i1. This can be seen as a
more general case of transitivity, where the properties in the chain are not required to be in an
equivalent- or sub-property relation in order to produce a MIS. An example for a MIS due to
an OWL property chain is shown in listing 6.8.
In the example D may only have an inverse relation hasChainedD to X. The annotation
concept gets unsatisfiable because it complies with the pattern of the property chain. Thus, A
gets the property hasChainedD to D. This results in the inverse property inv hasChained on D
for A which is forbidden by the definition of D.

1 Class (A) , Class (B) , Class (C) , Class (D) , Class (X) ,
2 Class (A/hasB/B/hasC/C/hasD/D)
3 ObjectProperty (hasB) , ObjectProperty (hasC) , ObjectProperty (hasD)
4 ObjectProperty (hasChainedD)
5 PropertyChain (hasB o hasC o hasD −−> hasChainedD)
6 EquivalentClass (D and inv (hasChainedD) only (X)
7 EquivalentClass (A/hasB/B/hasC/C/hasD/D, D and inv (hasD)
8 some (C and inv (hasC) some (B and inv (hasB) some A)))
9 d i s j o i n t (A, B , C,D, E , X)

Listing 6.8: Example ontology for a non local invalidation by a property chain

Arbitrary Combinations

We can conclude that non-local invalidations of an annotation path can be constructed in OWL
in various ways. Those are simple restriction chains that are defined with anonymous classes
(as we define our annotation path expression) or by named classes. These expressions can
be formulated in different directions. In addition to such restriction chains also transitive
properties and property chains can lead to dependencies that span more than one concept.
Finally those different constructs that can result in an unsatisfiable annotation concept can
be mixed and the conflicting definitions can be inherited. We provide an example for an
invalidation that uses multiple such patterns in listing 6.9. In the example the property chain
hasC,hasD –> hasCD results in the additional hasCD assertion on B in the annotation path.
Because there is a restriction on A that restricts the values of hasB to X and X has a restriction
on hasCD that allows only Z and Z is disjoint from D that is derived from the property

110 6 Logical Invalidation of Annotations

chain the annotation concept gets unsatisfiable. Thus, we have a combination of a chain of
restrictions and a property chain.

1 Class (A) , Class (B) , Class (C) , Class (D) , Class (X) , Class (Y) , Class (Z)
2 Class (A/hasB/B/hasC/C/hasD/D)
3 ObjectProperty (hasA) , ObjectProperty (hasB)
4 ObjectProperty (hasC) , ObjectProperty (hasD)
5 ObjectProperty (hasCD)
6 PropertyChain (hasC , hasD −−> hasCD)
7 EquivalentClass (A/hasB/B/hasC/C/hasD/D, D and inv (hasD)
8 some (C and inv (hasC) some (B and inv (hasB) some A)))
9 EquivalentClass (X and hasCD only Z)

10 EquivalentClass (A and hasB only X and hasC only Y and
11 hasD only D)
12 EquivalentClass (D and inv (hasD) some (C and inv (hasC) some
13 (B and inv (hasB) some A)))
14 d i s j o i n t (Z ,D)

Listing 6.9: Example ontology for a non local invalidations by a mixed chain

6.3.4 An Algorithm for the Detection of a Minimal Invalid Sub-Path

An algorithm for the detection of a minimal invalid sub-path of an annotation path p can be
based on a structural search over conflicting axioms in the reference ontology. The last section
has shown that such non local conflicts can occur due to many different OWL constructs. Of
course a MIS can be the result of a combination of the described causes, which makes an
exhaustive search even more complex. The efficiency of such an algorithm is further reduced
by the fact that reasoning over sub-, super-, and equivalent-properties and -classes is required.
In addition, for such a detection method the first and last triple of a sub-path are not known in
advance. This makes another approach that directly operates on definition 6.3.4 of a minimal
invalid sub-path more efficient. The corresponding algorithm is shown in in listing 6.10. The
algorithm takes an invalid path p that is free of local and direct-triple disjointness invalidations
as input and returns the index of the start and end triple of the detected MIS.
The algorithm uses some helper methods. The method p.tripleCount() returns the number of
triples of p, createSubPath(p,l,r) returns the OWL expression of a sub-path of p that starts at
index l and ends at index r. The methods assumes that the leftmost triple of p has the index
1 and the last triple of p has the index p.tripleCount(). The method O.unsatisfiable(owlexp)
returns true, if the OWL expression owlexp is unsatisfiable in the ontology O.
The first loop is used to find the right boundary of a MIS. This is realized by sequentially cre-
ating a sub-path of p that begins at position 1 and end at position r, where r is decremented in
each iteration. The loop terminates as soon as the created sub-path gets satisfiable. Therefore,
the right boundary of the MIS must be at position r + 1. The reason for this is that analogues

6

6.3. Invalidation of General Annotations 111

to theorem 6.3.2, there can exist no complete MIS before position r. Otherwise r cannot be
satisfiable. After the right boundary was found it is guaranteed that the sub-path between 1
and r + 1 is invalid. However, it is not yet sure that it is minimal. Therefore, the left boundary
of the MIS needs to be found. This is realized by creating a sub-path that begins at position l
and ends at position r + 1, where l starts at 2 and it is incremented in each iteration. As soon
as such a sub-path gets satisfiable the left boundary of the MIS has been found at position
l − 1.

1 (in t , i n t) getMinimalInvalidSubpath (p ,O) {
2 r = p . t r ip leCount ()−1 ;
3 // Find the r i g h t border of the MIS
4 while (O. u n s a t i s f i a b l e (createSubPath (p , 1 , r))
5 r−−;
6 }
7 l = 2 ;
8 // Find the l e f t border of the MIS
9 while (O. u n s a t i s f i a b l e (createSubPath (p , l , r + 1))

10 l ++;
11 }
12 re turn (l −1 , r +1)
13 }

Listing 6.10: An algorithm for the detection of the minimal invalid sub-path

The detected MIS complies with definition 6.3.4 because both iterations guarantee that the
removal of the first or last triple of the MIS result in a valid sub-path of p. The algorithm
guarantees that is can find one MIS. If a path contains multiple MIS, we propose to remove
them iteratively with the help of the proposed algorithm.

Theorem 6.3.5. When the algorithm of listing 6.10 is used on a path that is free of local and direct-
triple-disjointness invalidations that contains multiple MIS, then the leftmost inner MIS is detected.

Proof-Sketch: Given an annotation path p = /t1/t2/.../tn. In the first iteration sub-paths
starting at t1 of p are created. The unsatisfiable sub-path with the minimum number of triples
is considered to be a MIS-candidate. According to theorem 6.3.2 there can exist no other
complete MIS in the path that ends before the MIS candidate. It is only possible that there
exists another MIS that starts before and ends after or at the same position as the detected
one. In the next loop the minimality of the MIS is guaranteed by chopping elements from the
start. As a consequence the algorithm detects the leftmost inner-MIS.

112 6 Logical Invalidation of Annotations

6.4 Implementation Considerations

In this chapter we have defined error-types on annotation paths. The goal is to tell the user,
which steps of a path are responsible for the invalidation including an explanation of the type
of invalidation. The detection of most invalidation types is straight forward. It is just a query
to the reasoner that is equivalent to the definition of the specific invalidation type. Non local
invalidations can be tracked by the proposed MIS algorithm. However, testing each triple
of every invalid annotation path can be an expensive task. Therefore, we will briefly discuss
properties of annotation path that can be used to enormously reduce the number of queries
to the reasoner. In a typical scenario there is a set of valid annotations V and a set of invalid
annotations I. Both sets are a direct result of the classification of the reference ontology with
the added annotation concepts. We now define properties that hold between the elements of
V and I.

Theorem 6.4.1. Globally-valid path-postfix: Given a set of valid annotations V and one invalid
annotation i. If there exists an annotation v in V with a common postfix (ending with the
same sequence of triples) with i, then the corresponding sub-path of i cannot introduce local
or direct-triple-disjointness invalidations.

Proof. No annotation path ∈ V can contain local or direct-triple-disjointness invalidations.
Otherwise it would not be satisfiable. If a path is satisfiable also every postfix of it must be
satisfiable due to the monotonicity of OWL. An annotation concept is a specialization of the
last concept-step. The longer a path is, the more specific is the annotation concept. When there
exists an annotation path v ∈ V which has the same postfix f as i, then i.concept is a more
specific concept than f .concept. Thus, the additional specialization must induce the error. It is
represented by the prefix of i which does not match f .

Theorem 6.4.2. Globally-valid-triples: A triple that is an element of a path ∈ V cannot produce
a local invalidation when it is used in a path in I.

Proof. The proof of theorem 6.4.2 is a direct consequence of theorem 6.3.2. Any triple that is
an element of a valid path cannot be logically invalid because otherwise the path would be
invalid.

These two properties of a globally valid postfix and triples can be used to find local in-
validations or intra-triple-disjointness invalidations very efficiently. As a first step the longest
common postfix from i and the annotations in V can be detected. If such a postfix is found it is
guaranteed that the corresponding postfix in i cannot contain local or direct-triple disjointness
invalidations. In addition all triples in all paths of V can be considered as locally valid triples.
Thus, if they occur in i they do not need to be tested for local invalidations.
Finally, when the annotation concepts are represented in form of normalized concepts (see
definition 6.3.2) in the ontology, it is guaranteed that all triples that correspond to satisfiable

6

6.5. Additional Justifications of Invalidations in Annotation Paths 113

named concepts are locally valid and that no direct-triple-disjointness invalidations can exist
between succeeding triples, that correspond to satisfiable named concepts in the normalized
representation.
All these considerations can lead to a major speedup for the detection of invalidations because
triples and combinations of triples that are known to be valid do not need to be checked for
specific error-types (domain-invalidation, range-invalidation, ...) and in order to guarantee that
the input path of the MIS algorithm is free of local or direct triple-disjointness invalidations,
only the potentially invalid triples and combinations of triples need to be checked.

6.5 Additional Justifications of Invalidations in Annotation
Paths

So far we have defined invalidation types and provided algorithms and methods to efficiently
track invalidations. This information can be used to find a logically valid variation of the anno-
tation path. While local and direct-triple-disjointness invalidations can be located exactly, non
local invalidations can only be tracked in form of a minimal invalid sub-path (MIS). If the user
has difficulties in finding the reason for the invalidation based on a MIS, general debugging
methods to justify invalidations can be used additionally. The computation of justifications
or the minimal subset of axioms that are responsible for the unsatisfiability of a concept is
studied in the field of ontology debugging (see section 6.6). We distinguish two different cases
for the generation of such additional justifications for the invalidation: General justifications,
when the annotations are introduced for the first time and the detection of changes that are
responsible for invalidations after ontology evolution.

6.5.1 General Justifications

Typical approaches to justify/explain, why a concept is unsatisfiable are based on the calcula-
tion of a Minimal Unsatisfiability Preserving sub-Tbox (MUPS) [89] of an unsatisfiable concept.
A Black-Box algorithm to detect one MUPS is presented in [45]. It is directly inline with our
assumption of a reasoner-independent annotation debugging system. The calculation of the
MUPS is straight forward and is shown in figure 6.2.

The algorithm begins with an empty Tbox and adds sets of axioms until the concept in
question becomes unsatisfiable. In a next step the generated subTbox needs to get minimal.
Thus, the removal of any element must render the concept satisfiable. This is realized by a
subsequent removal of axioms. After each removal step the concept is tested for satisfiability.
If it is satisfiable then the axiom cannot be removed otherwise it is removed. Between the
addition and the subsequent deletion of axioms is a fast-pruning step. It is realized by a
sliding window. Thus, instead of removing single axioms a set of axioms is removed at once.

114 6 Logical Invalidation of Annotations

Figure 6.2: The black-box MUPS algorithm from [45]

This reduces the number of reasoner calls and is responsible for a major performance gain.
An important tuning parameter is the selection of the set of axioms that is added during the
first step. The authors of [45] describe that in their implementation they slowly start to add
more and more axioms beginning at the concept in question. Then they add axioms that are
structurally connected to the axioms of the concept.
While this is a good general approach for arbitrary debugging scenarios we propose that our
findings about non local invalidations can be used as a heuristics to further tune this approach
for our application scenario:

• Add the axioms of the annotation concepts between the beginning and the end of the
minimal invalid sub-path pm including definitions of the property-characteristics and
property chains.

• Perform a structural search for a path between the beginning and the end of pm in O.

• Add the axioms of the elements that where found, during the structural search.

• Subsequently add axioms that are connected to the found elements/axioms.

The structural search can be implemented as an adoption of the proposed algorithm in [77].
It should exploit the presented patterns for non local invalidations from section 6.3.3. Since the
corresponding properties and the start and end of the minimal invalid sub-path are known,
we can efficiently search for such patterns.
There can potentially be multiple MUPSs for one unsatisfiable concept. Thus, when all MUPSs
of an unsatisfiable concept are found and at least one axiom of each MUPS is removed the
concept becomes satisfiable. Algorithms to find all MUPSs based on one MUPS are provided
in [45]. Since this thesis focuses on the maintenance after ontology evolution we will not go
into detail for this potential heuristic optimization for the generation of justifications.

6

6.5. Additional Justifications of Invalidations in Annotation Paths 115

6.5.2 Justifications after Ontology Evolution

In case of annotations maintenance after ontology evolution we assume that the now unsat-
isfiable annotation concept was satisfiable in the old ontology version. Therefore, it must be
possible to find the reason for the invalidation in a change-LOG that captures the changes
between the old ontology version On and the new version On+1. As discussed in chapter 4 an
appropriate LOG of changes for OWL ontologies is a LOG of added and deleted axioms.

This leads to the following problem: Given a MIS, mis of an unsatisfiable annotation
concept in On+1 and a change-LOG C that, when applied on On produces On+1, find the
minimal set of axioms of C that is responsible for the invalidation of mis. C consists of two
sets of axioms: C.deleted and C.added.

Theorem 6.5.1. The justification for the invalidation of a MIS must be a subset of C.added.

Proof. This is a direct consequence of the monotonicity of OWL. A deleted axiom ∈ C.detelted
can never render a concept logically invalid. Therefore, the set of conflicting axioms from the
LOG can only be a subset of C.added.

After having shown that we must find the set of axioms that are responsible for the invali-
dation in C.added, we only need to find this set of axioms to justify the invalidation. This can
be realized with an adopted MUPS algorithm that basically does the following:

• Create a new ontology O′, where O′ = On \ C.deleted.

• Subsequently add axioms of C.added to O′ until mis gets unsatisfiable in O′.

• Subsequently remove the added axioms to proof that cmin is minimal.

The result of this algorithm is a minimal set of axioms of the change-LOG cmin that is re-
sponsible for the invalidation of the mis. We suppose that this is already valuable information
for the user who needs to adopt the annotation path in order to comply with the new ontology
version. Because typically only a small set of axioms is modified between two ontology ver-
sions, we can assume that the computation of cmin is far less expensive that the computation
of a MUPS.
The set of axioms cmin can additionally be used to find related change-descriptions of the
change ontology that is described in section 4.5. Each found axiom must have a relation to
some named entity in the ontology. Thus, we can query all changes on the related entities (in-
cluding sub/super- class and property relations) from the change ontology and present them
to the user in addition to the found conflicting axioms.

116 6 Logical Invalidation of Annotations

6.6 Related Work

The annotation method of this research has two representations: path expressions and com-
plex OWL formulas. Only the path expressions can be changed by the annotators. Therefore,
we have proposed methods to track errors in annotation paths. In order to find errors in the
corresponding complex OWL formula also general ontology debugging solutions could be
used. However, preliminary experiments with the well known OWL1 tool Swoop [77] have
shown, that Swoop was not able to detect the root-cause of many non local invalidations that
only used OWL1 language constructs. In this case the concept was detected to be invalid but
no explanation could be generated. When explanations could be generated it was very tedious
for the annotator to actually discover which elements in the path were responsible for the
problem. The integrated repair tool of Swoop could not help either. In contrast our method
can precisely track which elements in the path are responsible for the invalidation and it is a
reasoner-independent black-box approach. In addition we have defined error-types that indi-
cate the reason for the invalidation with respect to the steps of the path.
A fundamental publication in the field of ontology debugging is [89]. It introduces the term
of minimal unsatisfiable sub Tboxes (MUPS). A MUPS is a minmal set of axioms that is re-
sponsible for a concept to be unsatisfiable. When one axiom gets removed from the MUPS the
concept gets satisfiable unless, there are additional MUPS for the concept. This definition is
somehow analogues to our definition of the minimal invalid sub-path. In [45] an optimized
black box algorithm for the computation of the MUPS is presented. The Black-Box algorithm
basically tries to find the MUPS in a trial and error fashion, which requires a high number of
expensive reclassifications. In order to get all justifications the authors calculate a first justi-
fication (MUPS) and afterwards use a variant of the Hitting Set Algorithm [86] to obtain all
other justifications for the unsatisfiability.
The goal of general ontology debugging approaches is: Given an ontology with at least one
unsatisfiable concept find a set of axioms that need to be removed in order to obtain a coher-
ent ontology. There can be multiple sets of such axioms (also called diagnoses). Therefore,
it is beneficial to rank the possible repairs either by assuming that the set of removed axioms
should be minimal [89] or by selecting the diagnosis [44] that best fits the modeling intention
by asking an oracle/user. This is a major difference to the annotation maintenance scenario,
where the ontology cannot be changed by the annotator and only changes of the the path
expression are allowed. Therefore, we search especially for steps in the path that lead to an
error.
An alternative approach to debug ontologies are patterns/anti-patterns (in particular logi-
cally detectable anti-patterns) as proposed in [17, 16]. Those patterns concentrate on common
modeling errors that are made on ontology artifacts such as concepts. They can provide well
understandable explanations for common errors on simple concepts. Because the subject of
such patterns is a concept and not an annotation path their usefulness for annotation paths is
limited to simple cases.

6

6.7. Conclusion 117

6.7 Conclusion

In this chapter we have addressed the problem of the logical invalidation of annotation path
expressions. A logical invalid annotation path expression is a structurally valid path expres-
sion, where the corresponding annotation concept is unsatisfiable in the reference ontology.
We have provided an in depth analysis of the possible causes for logically invalid annotations.
There are basically two types of invalidations: local invalidations and non-local invalidations.
We have provided efficient detection methods for both types of invalidations. We expect that
experts who annotate artifacts will be much more efficient, if the position and the cause of er-
rors in annotations paths is automatically determined. This technique is also particulary useful
for annotation maintenance as a consequence of an evolution of the reference ontology. Our
method not only identifies the annotations which became logically invalid, but also narrows
the inspection area to the shortest possible path and gives indications on the causes of the
invalidation. For non local invalidations is can be useful to provide additional justifications for
invalidations. We have provided two approaches to generate such justifications: One approach
for the generation of justifications of new annotations and one approach specifically for the
maintenance of annotations. All proposed algorithms are built upon the functionality usu-
ally provided by generic reasoners for OWL ontologies, so they are not restricted to a specific
reasoner or ontology management system.

118 6 Logical Invalidation of Annotations

7

Chapter7
Detection of Semantic Changes

1We have already discussed the problem of structural and logical invalidations of annotation
paths in chapter 5 and 6. An annotation path is structurally valid, when the structure of
the path complies with the restrictions of the annotation method. The structural validity is a
precondition to transform an annotation path to an OWL concept. This is, where the logical
validation comes into play. An annotation concept that is not satisfiable in the reference ontol-
ogy is a logically invalid annotation path.
Nevertheless, changes in the reference ontology can have additional consequences for the an-
notations and especially for the interpretation of instance data. Such changes may require
to change the instance data in order to comply with the new ontology version. We call this
kind of invalidation semantic invalidation. In this chapter we will investigate, how semantic
invalidation can be tracked.

We will first present the notion of semantic changes and discuss if such changes to the
semantics of an annotation can be derived from the plain ontology in section 7.1 and describe
and define explicit dependency definitions in section 7.2 and 7.3. In section 7.4 we show how
the explicit definitions can be used to track semantic changes. In section 7.5 we present a
prototype-implementation of the approach. Section 7.6 gives an overview of the related work.

7.1 Semantic Changes and their Automatic Detection

Semantic changes are consequences of changes in the reference ontology which do not inval-
idate the annotation structurally or logically, but might lead to misinterpretations. We will
illustrate such semantic changes with the following example:

1The content of this chapter has been published in [58].

119

120 7 Detection of Semantic Changes

EU

Member

Country

Germany
France

...

consistsOf

Austria

isA
isA

isA

isA

hasInhabitants

hasPopulation

CountryisA

EUCommission
hasCommission

PresidenthasPresident

Commissioner

hasMember

Commisioner 1
...

instanceOf

Person hasNameisA

instanceOf hasBirthdate

isA

Slovenia

Commisioner 2

instanceOf

Figure 7.1: Example ontology

In figure 7.1 an example ontology2 that represents parts of the European Union is depicted.
We now assume that we have an annotation of an XML-Schema-element with the annotation
path /EU/hasPopulation. Some changes were made to the ontology: Slovenia was added as an
additional MemberCountry and an additional Commissioner-instance was added and persons
now have the property hasBirthdate. The differences between the old and the new ontology
version are marked in dark-grey. Now obviously the semantics of an annotation /EU/hasPop-
ulation of some element in an XML Schema are changed because the parts of the European
union were changed. This change does not influence the validity of the annotation itself - but
the semantics of the annotation has changed. Documents that were annotated with the old
ontology version will have a lower population number than documents of the current version.
This imposes problems because it leads to the misinterpretation of the data. For example a hu-
man reader might come to the conclusion that the EU has a higher birthrate after the change.
The goal of this chapter is the automatic generation of warnings about such changes.
Since an ontology is used to express the semantics of a domain it should be possible to derive
the changes of the semantics of annotations automatically. To avoid that each annotation has
to be checked, if any ontology element has changed, we need to reduce the set of ontology
elements which might invalidate a specific annotation. Ontology views [73] are methods to
reduce the size of an ontology. Ontology module extraction [18] techniques can be applied

2The member countries are modeled in form of concepts and specific commissioners as instances in order to show
problems that may occur when concepts or instances evolve.

7

7.1. Semantic Changes and their Automatic Detection 121

for the same purpose. These methods generate a sub-ontology that only contains relevant ele-
ments for a given starting point (set of concepts). The starting point in our case is the semantic
representation of an annotation path expression. When such sub-ontologies are created for
the old and the new ontology version we can check, if there were changes between the sub-
ontology versions. Since the sub-ontologies only contain elements that are relevant for the
annotation in question we should be able to significantly reduce the number of false-positives.
Typical methods for the generation of sub-ontologies begin with a concept in question and
then add more and more concepts that are related. The relation is expressed in form of sub/-
superclass relations or object-properties. We will illustrate the general idea of the generation
of a sub-ontology with an example:

• The starting point is EU/hasPopulation

• This leads the inclusion of the concept EU

• The consistsOf property on EU requires the addition of MemberCountry

• MemberCountry requires the addition of its superconcept: Country with the property has-
Inhabitants

• MemberCountry requires the addition of Slovenia, Austria, Germany, ...

When we now compare the view of the old and the new ontology version we can figure out
that Slovenia was added. We would throw a warning that the semantics of EU/hasPopulation was
possibly changed. In this example we have assumed that we include all datatype-properties
of a concept in the view and all concepts that are in the range of the object properties of
the included concepts. In addition, all super- and subconcepts as well as individuals of the
included concepts are added. Unfortunately, such an algorithm would include much more
concepts:

• The hasCommission property of EU requires the addition of EUCommission

• The hasPresident property of EUCommision requires the addition of President.

• The hasMember property of EUCommision requires the addition of Commissioner.

• The Commissioner concept requires the addition of its instances.

•

At the end the entire ontology would be included in the view. Thus, all changes that happened
between the old and the new ontology version are assumed to be relevant for EU/hasPopulation.
This is certainly not true. In order to avoid this behavior the set of properties that are followed
to build the view needs to be much smaller. Thus, strategies are required to choose the proper
object-properties that should be followed. But where is the difference between consistsOf and
hasCommission? From where can we know that if we want to build the view for EU/hasPop-
ulation we need to follow the consistsOf property and that if we want to create the view for

122 7 Detection of Semantic Changes

EU/numberOfCommissioners we need to follow the hasCommision property?
Thus, strategies are required in order to keep the view small and meaningful.

7.2 Requirements for Explicit Dependency-Definitions

As shown in the last section there is typically no knowledge about what may be invalidated
semantically by changes since this is not an invalidation of the logical theory (which could be
calculated) but a change of the semantics of the annotations. The reason for this is that the
ontology does not fully specify the real-world domain. Therefore, a straight forward solution
is the addition of the missing knowledge to the ontology. This means sentences like "The pop-
ulation of the EU is changed when the Member Countries change" should be added to the ontology.
Obviously this a very wide definition because we have not stated anything about the types
of relevant changes. Is it changed when the name of a country changes or only if a specific
attribute changes? In general which operations may invalidate our value? The examples of
the population of the EU can be described as the aggregation of the population of the member
countries. Thus, we need a way to describe such functions. These observations lead to the
following requirements for change-dependency definitions:

1. The change-dependent concept or property must be described including the context. For
example hasPopulation of EU and hasPopulation of City might depend on a different set of
ontology elements.

2. The definition of the change-dependency should allow fine grained definitions of depen-
dencies. For example it should be possible to define that EU/hasPopulation is dependent
on the population of the Member Countries. It would not be sufficient to state that it is
dependent on population in general.

3. It should be possible to define that one artifact is dependent on a set of other artifacts.

4. Multiple dependencies should be possible for one change-dependent concept or property.

According to the first requirement the dependent artifact needs to be specified precisely.
This can be realized with the annotation path syntax. Therefore, the path EU/hasPopulation
defines that the hasPopulation property on the concept EU is the subject of a dependency def-
inition. The second requirement supposes that not only the subject should be described via
path expressions but also the object of a change-definition should be described in terms of
path expressions. Unfortunately, the plain annotation path syntax does not fulfill the third
requirement. Therefore, it needs to be enhanced with expressions to address sets.

Dependencies on Sets and Aggregations: Some ontology artifact may be change-dependent
on a set of other artifacts. In our running example the population of the EU depends on the
set of Member Countries. More precisely it is not dependent on the set of Member Countries in

7

7.3. Definition of Change-Dependencies 123

general but on the sum of the hasInhabitants property of each MemberCountry. In general, there
are different kinds of sets in an ontology: subclasses, sub-properties and instances. Therefore,
all those must be expressible. The sum function is only one aggregation function. Typical
other aggregation functions are min, max, count, and avg. In addition to aggregation functions
another kind of function over sets is of interest: The value function. It can be used to state that
one artifact is directly dependent on the values of a set of other artifacts. The subclasses and
instances operator can be used in a path wherever a concept is allowed and the sub-properties
operator can be used wherever a property-step is allowed. We will illustrate the ideas with
examples:

1. EU/hasPopulation is dependent on
/EU/consistsOf/sum(subclasses(MemberCountry))/hasInhabitants.

2. EU/numberOfCommissioners is dependent on /EU/hasCommission/
EUCommission/hasMember/count(instances(Commissioner)).

3. MemberCountry/hasInhabitants is dependent on
MemberCountry/subproperties(hasInhabitants).

4. /city is dependent on value(subclasses(city))

The first example calculates the sum of all hasInhabitants properties of all subclasses of
member − countries, while the second one just counts the number of commissioner instances.
The first example defines an abstract sum because the ontology cannot contain any information
about the number of inhabitants on class level. It only defines that the value becomes invalid
if the ontology structure changes in a way that the function would operate on a changed-set
of ontology artifacts. In contrast the second example can return a defined number because it
is a simple count operation. In addition, it defines the change-dependency over instances. In
this case the ontology may contain instance data. In the third example it is assumed that the
hasInhabitants property has sub-properties and that a change of the sub-properties will also
invalidate EU/hasPopulation. Examples for sub-properties could be hasMalePopulation and has-
FemalePopulation.
The last example shows the value function. It defines that elements that are annotated with
/city are change-dependent on all the subclasses of city. Therefore, a rename of a subclass of
city requires a rename of the specific city-element in XML-documents as well.

7.3 Definition of Change-Dependencies

In order to introduce the proposed change-dependency definitions we will first briefly recall
our ontology model. We use the abstract ontology model from chapter 4 it is shown graph-
ically in figure 4.4. This ontology model covers the important concepts of most ontology
languages. By using this abstract model we can apply the work on different ontology for-
malisms that can be transformed to our representation. This does not require to transform the

124 7 Detection of Semantic Changes

whole ontologies to our ontology model. It is sufficient to formulate the changes that occur
to the ontology in terms of our ontology-model. Depending on the used ontology formalism
reasoning may induce additional changes that we can simply also add to our change-LOG by
comparing the materialized ontology version before and after the change.

Based on this ontology model we define annotation paths that are used to annotate
artifacts of an XML-Schema with a reference ontology. Both annotation path and dependency-
definitions are modeled in the meta-model in figure 7.2. An AnnotationPath consists of a
sequence of AnnotationPathSteps. Each step has a position and a uri that points to some
property or concept of the reference ontology. According to the referenced ontology arti-
fact an AnnotationPathStep is either a conceptStep or a propertyStep with the subclasses
objectPropertyStep and dataTypepropertyStep. Each step except the last step has a succeeding
step. Each step except the first step has a previous step. An annotation path has a defined
first and a defined last-step.
A DependencyDe f inition has one hasSubject relation to an AnnotationPath and one or more
hasObject relations to dependencyDe f initionPath. Each dependencyDefinitionPath consists of a
number of DependencyPathSteps. A DependencyPathStep is a subclass of an annotationPathStep
which is extended with an optional setExpression. The setExpression has a type (subclasses, sub-
properties, instances) and an optional f unction which has a type that can be value, min, max, avg,
count. Each DependencyDefinitionPath has a hasAnnotationPath relation to one AnnotationPath.
This specific annotationPath is created by casting all steps to standard AnnotationPathSteps.
An annotationPath can be represented in form of an ontology concept. This concept can be
obtained with the method getConcept().
In order to meet the constraints of the annotation method some integrity constraints on
AnnotationPath and DependencyDe f initionpath are required.

7.3.1 Integrity Constraints on Annotation Path

1. The first step must be a ConceptStep.

2. An AnnotationPath must not contain DependencyPathSteps.

3. The last step must be a ConceptStep or a dataTypePropertyStep.

4. When a conceptStep has a previous step then the previous step must be an ObjectProper-
tyStep.

5. The next step of a ConceptStep must be an ObjectPropertyStep or a DataTypePropertyStep.

6. A DataTypePropertyStep can only exist as the last-step.

7. A ConceptStep must not reference to another AnnotationPath.

7

7.4. Detection of Semantic Changes 125

-length

DependencyDefinitionPath-length

+getConcept()

AnnotationPath DependencyDefinition

-position

-uri

AnnotationPathStep

-restriction

ConceptStep

ObjectPropertyStep DatatypePropertyStep

DependencyPathSt...

-type {instances, subclasses, subproperties}

SetExpression

-type {min,max,avg,count,value}

Function

PropertyStep

1..*

1

0..1

1

1

*

1 0..*

0..1

*

0..1

1

0..1

11

0..1

1

0..1

1..*

1

1..*1

partOf
partOf

hasAnnotationPath

hasLastStep hasFirstStep

hasPreviousStep

hasNextStep

hasFunction
hasSetExpression

hasSubject hasObject

Figure 7.2: Meta-model of the change-dependency definitions

7.3.2 Integrity Constraints on Dependency Definition Path

1. All integrity constraints of standard steps except (2) and (7) also apply on
DependencyDe f initionPath.

2. Only the last two steps may have a setExpression including a f unction.

3. The setExpression of type subclasses is only allowed for conceptSteps.

4. The setExpression of type instances is only allowed for conceptSteps.

5. The setExpression of type subproperties is only allowed for propertySteps.

7.4 Detection of Semantic Changes

Given a set of annotations, a representation of changes analogues to chapter 4 and a set of de-
pendency definitions we need to find annotation paths that are possibly semantically invalid.
In addition we need a report, why each possibly invalid path got invalid. The change represen-
tation stores the changes in form of instances of a change ontology. The detection of relevant
changes is realized by rules that operate on the statements of the change representation and
the old and the new ontology versions.

126 7 Detection of Semantic Changes

We now define semantic invalidation as a change affecting the semantics of an annotation
path as follows. The predicate matches(a, b, On) returns true, iff the annotation path a matches
the annotation path b with a strong match (equivalence- or subclass- relation) with regard to
the ontology version On (see section 3.2.2). The predicate subClassO f (subc, superc, On) states
that subc is an equivalent or subclass of the superclass superc according to the ontology version
On. The predicate subPropertyO f (subp, superp, On) expresses the sub-property-relationship
analogously.

Definition 6. Semantic Invalidation of an Annotation-Path:

Given an ontology version On, a succeeding ontology version On+1, a set of changes
Changes(On, On+1) abbreviated by C, a set of explicit dependency-definitions DEP, and a set
of XML-Schema-annotations A. An annotation path a ∈ A is semantically invalid if:

semInvalid(a, C, DEP, On, On+1) ← InvalidByDep 6= {}

RelevantDependencies is the set of definitions where the corresponding subject is an equivalent-
or superclass of the annotation path a:
RelevantDependencies = {∀dep ∈ DEP|matches(a, dep.subject, On)}
InvalidByDep is the set of change-dependency definitions where one of the objects got invalid
because it contains a step that is invalid or if the semantics of the annotation path of the object
itself got changed.

InvalidByDep = {∀dep ∈ RelevantDependencies|(hasObject(dep, obj)
∧ isInvalid(obj)) ∨ (hasAnnotationPath(obj, annotationPathObject)
∧ semInvalid(annotationPathObject, C, DEP, On, On+1))}

Thus, dependency-definitions are transitive. If a depends on b and b depends on c then
a is invalid when c is invalid.

A DependencyDe f initionPath is invalid if at least one of its steps is invalid:
isInvalid(obj) ← ∃step ∈ obj.steps ∧ InvalidStep(step)
When a step is invalid is described in the next subsections.

Rules for the Invalidation of Steps:

For the sake of simplicity we will define the invalidation of steps in form of rules omitting
quantifiers. In addition all rules operate on the change-set defined by Changes(On, On+1). The
rules 1-3, 6, 8, 10 create possible invalidations, while the others create invalidations. Possible
invalidations are invalidations where an invalidation may have taken place but additional
review by the user is required.

7

7.4. Detection of Semantic Changes 127

1. A PropertyStep gets possibly invalid, if the domain of the property or of a super-property
has changed.
PropertyStep(?step) ∧ subPropertyO f (?step.uri, ?superProperty,
On+1) ∧ updateDomain(_, ?superProperty, _, _)
⇒ InvalidStep(?step,′ DomainO f PropertyChanged′)

2. A property-step is possibly invalid, if the range of the property or a super-property has
changed.
ObjectTypePropertyStep(?step) ∧ subPropertyO f (?step.uri, ?superProperty,
On+1) ∧ updateRange(_, ?superProperty, _, _)
⇒ InvalidStep(?step,′ RangeO f PropertyChanged′)
The same holds for the change of the data type of a datatype-property analogously.

3. A concept-step gets possibly invalid, if a restriction on the property of the next step has
changed.
ConceptStep(?step) ∧ isSubConceptO f (?step.uri, ?superuri, On+1) ∧
hasNextStep(?step, ?next) ∧ subPropertyO f (?next.uri, ?supernexturi, On+1)
∧ updateRestriction(_, ?superuri, ?supernexturi, _, _, _, _)
⇒ InvalidStep(?step,′ RestrictionOnNexStepChanged′)

4. A set expression over subclasses without a function becomes invalid, if a subclass is
added.
ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp, _) ∧ equals(?exp.type,′ subclasses′) ∧
subConceptO f (?suburi, ?step.uri, On+1) ∧ addChildC(_, ?newc, ?suburi)
⇒ Invalid(?step,′ SubclassAdded′)

5. A set expression over subclasses without a function becomes invalid, if a subclass is
removed.
ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp, _) ∧ equals(?exp.type,′ subclasses′) ∧
subConceptO f (?suburi, ?step.uri, On+1) ∧ remChildC(_, ?newc, ?suburi)
⇒ Invalid(?step,′ SubclassRemoved′)

6. A set expression over subclasses without a function becomes possibly invalid, if a
restriction on the property of the next step is changed in one of the subconcepts.
ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp, _) ∧ equals(?exp.type,′ subclasses′)
∧ subConceptO f (?suburi, ?step.uri, On+1) ∧ hasNextStep(?step, ?next)

128 7 Detection of Semantic Changes

∧ subPropertyO f (?nextpropuri, ?next.uri, On+1) ∧
updateRestriction(_, ?suburi, ?nextpropuri, _, _, _, _)
⇒ Invalid(?step.′RestrictionOnSubclassChanged′)

7. A set expression over instances without a function becomes invalid, if instances are
added or removed to/from the specified concept or one of its subconcepts. We will only
depict the rule for the addition here.
ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp, _) ∧ equals(?exp.type,′ instances′) ∧
subConceptO f (?conceptUri, ?step.uri, On+1)
∧ addInstToC(_, _, ?conceptUri) ⇒ Invalid(?step,′ InstancedAdded′)

8. A set expression over instances becomes possibly invalid, if the succeeding-step is a
property-step and property assertions on instances for that property are modified.
ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp, _) ∧ equals(?exp.type,′ instances′) ∧
subConceptO f (?conceptUri, ?step.uri, On+1) ∧ hasNextStep(?step, ?next) ∧
PropertyStep(?next) ∧ instanceO f (?insturi, ?conceptUri) ∧
updatePropertyAssertion(_, ?insturi, ?next.uri, _, _)
⇒ Invalid(?step,′ PropertyAssertionChanged′)

9. A set expression over sub-properties becomes invalid, if a sub-property is added or
removed. We will only depict the rule for the addition here.
PropertyStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp, _) ∧ equals(?exp.type,′ subproperties′) ∧
subPropertyO f (?suburi, ?step.uri, On+1)
∧ (addChildOProp(_, ?newc, ?suburi) ∨ (addChildDProp(_, ?newc, ?suburi))
⇒ Invalid(?step,′ SubpropertyAdded′)

10. A set expression over sub-properties becomes possibly invalid, if the domain or range
of a sub-property is changed. uDomainOrRange is the superclass of updateDomain and
updateRange
PropertyStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp, _) ∧ equals(?exp.type,′ subproperties′)
∧ subPropertyO f (?suburi, ?step.uri, On+1) ∧
uDomainOrRange(_, ?suburi, _, _)
⇒ Invalid(?step,′ DomainOrRangeO f SubpropertyChanged′)

7

7.4. Detection of Semantic Changes 129

Functions on Set Expressions:

The rules in the last section excluded the existence of functions over setExpressions. There-
fore, any change that has consequences for the setExpression is considered to invalidate the
step. When a function is given then the problematic change-operations depend on the used
function and, therefore, additional rules are required. The sum-function is vulnerable to add
and delete operations but is resistent to local merge or split operations. All other aggrega-
tion functions are vulnerable to add, del, split, and merge. The value function is vulnerable
to renames of subconcepts or sub-properties as well as to delete, split and merge operations.
Therefore, specific rules for the different kinds of functions are required. Since merge and split
are composite change-operations the rules need to operate on the annotation of the changes
(ChangeAnnotation(...)). We will provide the rules for sum-functions with added subconcepts
and value-functions with renames here.

1. A concept-step with a sum-function over subconcepts gets invalid, if subconcepts are
added or removed and the add and remove operations are not linked to local split or
merge operations. A non-local split operation happens when the source concept was a
subconcept of the step and one of the new concepts is not, still, a subconcept of the step
according to the current ontology version. The following rule represents the case of the
addition of subconcepts.

ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
hasFunction(?exp, ? f u) ∧ equals(? f u.type,′ sum′) ∧
subConceptO f (?suburi, ?step.uri, On+1) ∧ addChildC(?tid, ?newc, ?suburi)
∧!(splitC(?stid, ?source, ?suburi) ∧ ChangeAnnotation(?stid, ?tid)
∧ subConceptO f (?source, ?step.uri, On) ∧
!(splitC(?stid, ?source, ?otherSplitUri) ∧ notequals(?otherSplitUri, ?newc)
∧ addChildC(?tid, ?otherSplitUri, ?otherAddUri)
subClassO f (?otherAddUri, ?step.uri, On+1)))
⇒ Invalid(?step,′ SubclassAdded′)

2. A concept-step with a value-function gets invalid if one of the subconcepts is renamed
or deleted. We will show the rule for the renames here.

ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
hasFunction(?exp, ? f u) ∧ equals(? f u.type,′ value′) ∧
subConceptO f (?oldUri, ?step.uri, On+1) ∧
renameConcept(_, ?oldUri, ?newUri)
⇒ Invalid(?step,′ Value− Changed′)

130 7 Detection of Semantic Changes

7.5 Proof of Concept Implementation

We have implemented the approach for computing semantic invalidations of annotation paths
using the Jena API3 and the pellet4 reasoner. The input for the algorithm consists of a set
of annotation paths, a set of dependency-definition paths, and the change representation in
form of ontology instances as described in section 4.5.3. The output is a subset of the input
annotation path where the semantics has (possibly) changed. Additionally, explanations for
the semantic invalidations are provided. The rules as proposed in section 7.4 are implemented
in form of SPARQL queries that operate on instances of the change-LOG and the instances of
the meta ontology. The required negation is implemented in form of SPARQL filters.
The special property subClassO f (c1, c2, ?v) (and subpropertyO f (p1, p2, ?v) analogously) is re-
alized in form of two distinct properties subClassO f Old(c1, c2) and subClasso f New(c1, c2)
that are added to the instances of the source and target ontology version of the ontology
meta-model. Most invalidation rules can directly be represented in SPARQL, while some more
complex queries need additional post-processing. The prototype demonstrated the feasibility
of our approach and was also used to generate the output for the case-study in section 8.7.

7.6 Related Work

In [37] the consistent evolution of OWL ontologies is addressed. The authors describe struc-
tural, logical and user-defined consistency requirements. While the structural and logical
requirements are directly defined by the used ontology formalism the user-defined require-
ments describe additional requirements from the application domain that cannot be expressed
with the underlying ontology language. The authors do not make any suggestion on how
these requirements should be expressed. Our approach can be seen as one specific form of
user-defined-consistency requirements. The main difference is that in our case the artifact that
becomes inconsistent if a user-defined consistency-definition is violated is not the ontology
itself but instance-data in XML-documents. In [9] functional dependencies over Aboxes (indi-
viduals) are addressed. The dependencies are formulated in the form antecedent, consequent
and an optional deterministic function. The antecedent and consequent are formulated via
path expressions which can be compared to our approach. The dependencies are directly
transformed to SWRL-rules. Therefore, the functional dependencies directly operate on the
individuals (Abox) and additional knowledge can be added to the Abox. In addition, data that
does not comply with the rules can be marked as inconsistent. In contrast to our approach,
the approach is limited to the instance layer which makes it unusable for our scenario where
instance-data from XML-documents is never added to the Abox. Therefore, knowledge about
changes needs to be evaluated on class-level in order to predict semantic-changes of the se-
mantics of instance-data.

3http://incubator.apache.org/jena/
4http://clarkparsia.com/pellet/

7

7.7. Conclusion 131

In [83] the validity of data-instances after ontology evolution is evaluated. An algorithm is
proposed that takes a number of explicit changes as input and calculates the implicit changes
that are induced by the explicit changes. These explicit and implicit changes can then be used
to track the validity of data-instances. The general idea of the approach is that if an artifact
gets more restricted existing instances are invalidated. Since the approach only takes into ac-
count implicit changes that can be computed based on explicit changes it does not support the
explicit definition of change-dependencies.
While there is only limited work on dependencies in the field of ontologies it is traditionally
broadly studied in the database community. Recent and related research in this field is for ex-
ample [8] and [14]. In [8] a model and system is presented that keeps track of the provenance
of data that is copied from different (possibly curated) databases to some curated database.
Changes in the source databases may influence the data in the target databases. Therefore,
provenance information is required to track those changes. In [14] the problem of provenance
in databases is formalized with an approach that is inspired by dependency analysis tech-
niques known from program analysis or slicing [43] techniques. In contrast to our approach
both provenance approaches cope with changes of instance data and do not address changes
of schema/meta-data.

7.7 Conclusion

In this chapter we have addressed the problem of semantic changes of annotations that oc-
cur due to the evolution of their reference ontologies. Those changes result in the miss-
interpretation of instance data. It is therefore, necessary to detect such changes. We have
first shown that extra knowledge is required to detect such invalidations. We have proposed
to model this knowledge explicitly by using change-dependency definitions. Such defini-
tions state that an annotations/ontology element is dependent on changes over other arti-
facts in the ontology. When specific changes occur on those artifacts, the dependent anno-
tation is considered to be (possibly) semantically invalid. We have proposed the definition
of change-dependencies and have shown how invalidations can be tracked by evaluating the
dependency-definitions and a representation of the changes using standard rules.

132 7 Detection of Semantic Changes

8

Chapter8
Case Study

In this chapter we provide an imaginary case from the field of the automotive industry that
intends to show how the methods and implementations for semantic annotation, mapping
generation, change representation, structural and logical maintenance of annotations as well
as the detection of semantic changes can be combined. The aforementioned building-blocks
are the basis for the future implementation of a tool-set and are shown graphically in figure
8.1.

8.1 The Setting

A number of car-makers and their suppliers have agreed on a common reference ontology. The
ontology has two main purposes: On the one hand it is used to allow interoperability between
the companies and on the other hand it also represents standards for the classification of cars,
options for cars and their evolution. We narrow our case to the exchange of documents that
describe a limited set of features and specifications of the offered cars. Those documents
are used as a data-source for product descriptions for electronic catalogs as well as printed
advertising folders. The structure of the documents is defined by XML-Schemas. The involved
partners are car-makers and advertising agencies. Each partner annotates their schemas in
order to allow the mapping generation as proposed in chapter 3. Those annotations need to be
maintained, when structural or logical errors occur. In addition, changes of the classification
of the options and cars may have semantic consequences for the instance data which must be
detected in order to prevent legal problems and to classify options and cars according to the
current standard.

133

134 8 Case Study

Semantic Change-Detection

Logical Annotation Maintenance

Structural Annotation Maintenance

Change Representation

Schema Matching

Semantic Annotation

Figure 8.1: Building-blocks for semantic annotations in an evolving environment

8.2 Example Ontology

We propose that the different partners have agreed on a common reference ontology. The
relevant parts of the ontology are shown in figure 8.2. We use UML for a compact graphical
representation. We use UML classes for concepts, UML attributes for datatype properties and
binary relations for object properties. Instances are assigned to concepts via dashed lines.

In addition to the plain OWL reference ontology the partners have agreed on the follow-
ing change-dependencies that are used to track the consequences of changes in the reference
ontology:

• ComfortOption depends on instances(ComfortOption)

• SafetyOption depends on instances(SafetyOption)

• CarMaker/FleetCarEmmissions depends on Sum(Subclasses(PassengerCar))/C02perKM

The idea is that the reference ontology is used to classify available options. These options
are represented as instance of the reference ontology and changes over those instances have

8

8.2. Example Ontology 135

-FleetCarEmissions

-CarMakerName

CarMaker

-MPGRating

-CO2perKM

-color

-Type

Vehicle

PassengerCarLightTruck Truck

Sedan Van MiniVan

-EnginePartNo

-RatingHP

-RatingKW

Engine

-Name

-Description

-Price

Option

SafetyOption ComfortOption

-Name

Model

ProductDescription

-ID

-Date

Document

VW MazdaFiat

-ISONR

-CommonName

Fuel

-CETAN

Diesel

-ROZ

Gas

CNG

consumes

descr

hasIssuer

hasOption

belongsTo

sells

has

produces

Bi-Xenon-Light

Figure 8.2: Example car ontology first version

consequences for the documents. Therefore, the users should be warned, if they have schemas
that potentially contain options that were subject to a change/reclassification. In addition, a
general change-dependency on the average CO2-Emissions of the car-makers is defined ac-
cording to some law. It states, that the emissions of a car-maker depend on the sum of the
emissions of the subclasses of passenger-cars. Since no passenger-car is actually added this
is an abstract sum, that cannot return any value. But changes of the subclasses have conse-
quences on the values in the documents. Thus, also in this case the user should be warned
about modification that have influence on the average CO2 emissions.

136 8 Case Study

8.3 Example Annotations

We will concentrate on a small use-case between two partners, where one specific car-maker
sends documents with the specifications and available options to an advertising agency. The
schema that is used by the car-maker is annotated with the annotation set in listing 8.1. The set
of annotations of the schema of the advertising agency is shown in listing 8.2. The car-maker
Mazda has annotated the elements specifically for the semantics for documents from Mazda.
For example Mazda uses the schema only for passenger cars and the issuer is always the
car-maker itself. In contrast the advertising agency uses a broader annotation that allows all
kinds of vehicles from arbitrary car-makers.

1 ProductDescr ipt ion/ID
2 ProductDescr ipt ion/Date
3 ProductDescr ipt ion/has Issuer/Mazda/FleetCarEmiss ions
4 ProductDescr ipt ion/has Issuer/Mazda/CarmakerName
5 ProductDescr ipt ion/descr/PassengerCar/belongsTo/Model/Name
6 ProductDescr ipt ion/descr/PassengerCar/Type
7 ProductDescr ipt ion/descr/PassengerCar/has/Engine/RatingHP
8 ProductDescr ipt ion/descr/PassengerCar/has/Egnine/consumes/Fuel/ISONR
9 ProductDescr ipt ion/descr/PassengerCar/has/Egnine/consumes/Fuel/CommonName

10 ProductDescr ipt ion/descr/PassengerCar/MPGRating
11 ProductDescr ipt ion/descr/PassengerCar/ c o l o r
12 ProductDescr ipt ion/descr/PassengerCar/belongsTo/Model/hasOption/SafetyOption
13 ProductDescr ipt ion/descr/PassengerCar/belongsTo/Model/hasOption/ComfortOption

Listing 8.1: Example annotations of schema 1

1 ProductDescr ipt ion/ID
2 ProductDescr ipt ion/Date
3 ProductDescr ipt ion/has Issuer/CarMaker/FleetCarEmiss ions
4 ProductDescr ipt ion/has Issuer/CarMaker/CarmakerName
5 ProductDescr ipt ion/descr/Vehic le/belongsTo/Model/Name
6 ProductDescr ipt ion/descr/Vehic le/Type
7 ProductDescr ipt ion/descr/Vehic le/has/Engine/RatingKW
8 ProductDescr ipt ion/descr/Vehic le/has/Egnine/consumes/Fuel/ISONR
9 ProductDescr ipt ion/descr/Vehic le/has/Egnine/consumes/Fuel/CommonName

10 ProductDescr ipt ion/descr/Vehic le/MPGRating
11 ProductDescr ipt ion/descr/Vehic le/ c o l o r
12 ProductDescr ipt ion/descr/PassengerCar/belongsTo/Model/hasOption/SafetyOption
13 ProductDescr ipt ion/descr/PassengerCar/belongsTo/Model/hasOption/ComfortOption

Listing 8.2: Example annotations of schema 2

8

8.4. Mapping Generation 137

Figure 8.3: Screen-shot of the mapping-prototype

8.4 Mapping Generation

Now the advertising agency needs to generate a mapping between the schema of the car-
maker and their own schema. This can be realized fully automatically with the proposed
schema mapping methods from chapter 3. Most of the annotations can be matched by subclass
or equivalent class matches, only the annotation ...has/Engine/RatingHP needs to be matched
with a complex matching expression that uses a transformation template to translate from
horse-power to kilowatts for the target annotation ...has/Engine/RatingKW. A screen-shot of the
prototype implementation is shown in figure 8.3. Most matches in the screen-shot are subclass
matches because the source schema is a schema of a specific car-maker and the target schema
is a general schema for any type of descriptions of vehicles. The automatically generated
mapping (opened in MapForce) is shown in figure 8.4.

8.5 Ontology Changes

At some point in time the common reference ontology is modified to reflect new requirements.
The new ontology version is shown in figure 8.5. The following modifications were made:
The concept ProductDescription is removed. The subclasses Van and Mini-Van of passenger-
car are merged to one common concept Van. Light-Trucks that were previously considered
to be general vehicles are now classified as PassengerCars. The reason for that is a change

138 8 Case Study

/ProductDescription/descr/PassengerCar/b

/ProductDescription/descr/Vehicle/color

/ProductDescription/descr/PassengerCar/b

/P
ro

d
u

c
tD

e

/ProductDescription/descr/Vehicle/has/Engi

/ProductDescription/descr/Vehicle/MPGRating

/P
ro

d
u

c
tD

e
s
c

ri
p

ti
o

n
/

/ProductDescription/hasIssuer/CarMaker/Fl/ProductDescription/hasIssuer/CarMaker/C

/ProductDescription/descr/Vehicle/Type
/ProductDescription/descr/Vehicle/belongs

HP2KW

T_RatingHP T_RatingKW

CarSchema2

Datei: CarSchema2.xml

CarMakerImportSheet

ProductSheetID

CreationDate

IssuerCommonName

IssuerFleetCarEmissions

NameOfModel

BodyType

EngineFueltype

PowerRatingKW

Mileage

BodyColor

Options

SafetyOption

ComfortOption

CarSchema1

Datei: CarSchema1.xml

MazdaCarDescription

MilesPerGallon

Color

IssuerData

Brandname

MazdaFleetCarEmissions

DescribedCar

ModelName

Type

Engine2Info

Fueltype

PowerRatingHP

SafetyOption

ComfortOption

Figure 8.4: Automatically generated mapping

in the legislation. The domain of hasOption is changed from Model to Vehicle. Finally the
datatype-property CarMakerName is renamed to BrandName. This leads to a set of instances
of the change ontology that is depicted in figure 8.6. The change ontology instances were
generated automatically by comparing both ontology versions using the change representation
implementation from chapter 4. There is one composite-change. It has the change-id c11 and it
defines that MiniVan and Van are now both considered as Vans. There are two atomic changes
that are part of this composite change, namely c10 that deletes the concept MiniVan and c3 that
removes MiniVan from PassengerCar. Both atomic changes are associated with the composite-
change by using the object-property assertion partOfComplexChange to c11.

8.6 Structural and Logical Annotation Maintenance

After the ontology has evolved the annotations need to be revalidated structurally, logically
and semantically. The structural revalidation (see chapter 5) comes to the conclusion that all
annotations are structurally invalid because the concept ProductDescription has been removed.
Using the proposed algorithms from section 5.2 to find possible repairs, there exists one sin-
gle exchange-candidate Document for ProductDescription. Thus, Document is now used for all
annotations. The next structurally invalid annotation is Document/hasIssuer/CarMaker/Carmak-
erName. According to the change representation CarmakerName was renamed to Brandname.
Thus, the path can simply be replaced with a new path Document/hasIssuer/CarMaker/Brand-
name. Now all annotations are structurally valid and we can check for logical invalidations.
The following annotations are not satisfiable, when added to the reference ontology:

8

8.6. Structural and Logical Annotation Maintenance 139

-FleetCarEmissions

-BrandName

CarMaker

-MPGRating

-CO2perKM

-color

-Type

Vehicle

PassengerCar

LightTruck

Truck

Sedan Van

-EnginePartNo

-RatingHP

-RatingKW

Engine

-Name

-Description

-Price

Option

SafetyOption ComfortOption

-Name

Model

-ID

-Date

Document

VW MazdaFiat

-ISONR

-CommonName

Fuel

-CETAN

Diesel

-ROZ

Gas

CNG

descr

hasIssuer

consumes
hasOption

belongsTo

sells

has

produces

Bi-Xenon-Light

ProductDescription

X

Figure 8.5: Example car ontology second version

• Document/descr/Vehicle/belongsTo/Model/hasOption/SafetyOption

• Document/descr/Vehicle/belongsTo/Model/hasOption/ComfortOption

• Document/descr/PassengerCar/belongsTo/Model/hasOption/SafetyOption

• Document/descr/PassengerCar/belongsTo/Model/hasOption/ComfortOption

Using the methods from chapter 6 we know that the triples Document/descr/Vehicle, Vehi-
cle/belongsTo/Model, Document/descr/PassengerCar, and PassengerCar/belongsTo/Model are globally
valid triples because they are part of valid annotation paths. As a consequence the triples that
are potentially invalid are Model/hasOption/SafetyOption and Model/hasOption/ComfortOption. A

140 8 Case Study

Figure 8.6: Instances of the change ontology

check for local invalidations shows that the domain of hasOption is disjoint from Model. A
query to the change representations uncovers that the domain was changed from Model to
Vehicle. The user can thus, directly change the annotations to the new set of annotations:

• Document/descr/Vehicle/hasOption/SafetyOption

8

8.7. Detection of Semantic Changes 141

• Document/descr/Vehicle/hasOption/ComfortOption

• Document/descr/PassengerCar/hasOption/SafetyOption

• Document/descr/PassengerCar/hasOption/ComfortOption

8.7 Detection of Semantic Changes

After the annotations are maintained structurally and logically we can check for semantic
changes that may have influence on the instance data of the documents. We first detect the
relevant change-dependencies for the annotations as defined in section 7.4.

It turns out that Document/hasIssuer/CarMaker/FleetCarEmmissions is a subconcept of Car-
Maker/FleetCarEmmissions, which depends on the (virtual) sum of the hasC02perKM of passen-
gerCars. According to the rules for the invalidation of steps from subsection 7.4 we get the
invalidation report for Document/hasIssuer/CarMaker/FleetCarEmmissions: Subclass Light-Truck
added. The user can now acquire the official new CO2 emission value for the car-company
and replace all values in the instance documents with the new value. The merge of Mini-Van
and Van is not relevant for the dependency definition because is does not change the number
of potential instances. Therefore, it is not detected as an invalidation.

The next dependency definitions that are relevant are ComfortOption depends on in-
stances(ComfortOption) and SafetyOption depends on instances(SafetyOption). According to the
change-LOG the following report is generated and added to the corresponding annotations.

• ComfortOption is invalid because the instance Bi-Xenon-Light was removed.

• SecurityOption is invalid because the instance Bi-Xenon-Light was added.

The user can now check, if the documents potentially contain Bi-Xenon-Lights. If they
potentially contain them, he/she might decide to move them to the corresponding schema
elements. The relevant output that was generated by our prototype implementation from
section 7.5 is shown in listing 8.3. The denoted rules that triggered the invalidation report
refer to the rules in section 7.4.

142 8 Case Study

1 Document/descr/Vehic le/hasOption/SafetyOption
2 Checking f o r Set−Expression
3 Relevant change: addInstanceToConcept SafetyOption Bi−Xenon−Light
4 Step i n s t a n c e s (SafetyOption) i n v a l i d due to r u l e 7 .
5 Dependency D e f i n i t i o n v i o l a t e d : i n s t a n c e s (SafetyOption)
6 Document/descr/Vehic le/hasOption/ComfortOption
7 Checking f o r Set−Expression
8 Relevant change: removeInstanceFromConcept ComfortOption Bi−Xenon−Light
9 Step i n s t a n c e s (ComfortOption) i n v a l i d due to r u l e 7 .

10 Dependency D e f i n i t i o n v i o l a t e d : i n s t a n c e s (ComfortOption)
11 CarMaker/FleetCarEmissions
12 Checking f o r funct ion and s e t express ion
13 Relevant change: addChildConcept LightTruck
14 Step Sum(Subc lasses (PassengerCar)) i n v a l i d due to r u l e A1 .

Listing 8.3: Generated output for the detection of semantic changes

8.8 Conclusion

In this chapter, we have presented an use-case that shows how the methods from this thesis can
be used together. We have shown the annotations of the schemas and the automatic mapping
generation with our prototype implementation of chapter 3. We have then assumed that the
reference ontology was changed. The changes were represented using our change representa-
tion and detection approach from chapter 4. The changes made the annotations structurally
and logically invalid. We could propose possible repair actions by using the methods for struc-
tural and logical maintenance from chapter 5 and 6. Finally we could detect semantic changes
with the methods presented in chapter 7.

9

Chapter9
Conclusion

In chapter 1 we have motivated and introduced the problem of ontology evolution in a
semantic-annotation-based scenario. Semantic annotations can be used to allow interoper-
ability between heterogeneous systems by explicitly defining the semantics of the data with
regard to some reference ontology. The reference ontology formally describes the semantics
of the specific business domain. This allows the correct interpretation of the semantics of the
data by the participating partners/systems. Since the real world constantly evolves it is natu-
ral that also the reference ontology needs to adopt to new requirements over time. This leads
to the evolution of the reference ontology. The evolution has two consequences: First of all,
the annotations need to be maintained when they do not still comply with the new version of
the reference ontology. Second, the evolving ontology does not only express the semantics of
the domain at some specific point in time. It can also represent the changes of the domain.
This knowledge can be used to communicate such changes to the depending partners in or-
der to adopt their systems and data. In this thesis the primary goal was the maintenance of
the semantic annotations in the dimensions structure and logics and the detection of semantic
changes that have influence on the interpretation of instance data.
In this research we concentrated on the purely declarative annotation of XML-Schemas. Such
annotations have two main advantages over lifting and lowering mappings. First, they allow
the creation of schema mappings, which provides a good scalability as shown in the eval-
uation in section 3.5 and second, they allow the detection and (partly) automatic repair of
invalidations due to ontology evolution. We have provided the following contributions in this
thesis:

• A declarative semantic annotation method for XML-Schemas [57].

• Schema mapping methods based on the proposed annotation method [96].

• Methods for the proper representation of ontology changes [58].

143

144 9 Conclusion

• Methods for the structural and logical maintenance of annotations when the ontology
evolves [59].

• Detection methods for semantic changes after ontology evolution [58].

The goal of this thesis was pure research, that should be a basis for the future implementa-
tion of a tool-set. Therefore, we we have only partly implemented the proposed approaches in
form of proof of concept implementations. In particular we have implemented a schema map-
ping approach, the detection approach for semantic changes and the change-representation
method.

We have introduced a method for the purely declarative semantic annotation of XML-
Schemas in chapter 2. The method is based on path expressions that address concepts,
properties and instances of the reference ontology. Those path expressions can be used to
annotate schema elements according to the SAWSDL proposal. The path expressions can
automatically be converted to OWL formulas in order to represent the semantics with the help
of the reference ontology.

The goal of the annotations in this research was the automatic generation of transforma-
tion scripts that transform instance documents of one schema to instance documents that
comply with another schema. This can be realized by schema matching and mapping meth-
ods. Therefore, we have introduced the problem of schema matching in chapter 3. Schema
matching is used to find correspondences between schemas in order to generate mappings.
We have shown how the proposed semantic annotations can be used to find matches. Such
matches can be simple matches where one element of the source schema directly corresponds
to one element of the target schema or they can be complex matches, where some function
relates sets of schema elements of the source schema to sets of elements of the target schema.
In order to detect complex matches additional knowledge is required that we represent in
form of annotated transformation templates.
In order to show the applicability of the approach we have shown how different types of
mismatches between schemas can be resolved using our proposed annotation and matching
methods. Finally, we have discussed a prototype implementation and have evaluated the
performance of our declarative annotation based schema mapping approach against a lift-
ing/lowering approach that uses standard Semantic Web technologies and frameworks. The
results clearly show that our assumption that a declarative annotation based approach pro-
vides a better scalability than a lifting/lowering approach was correct. Our implementation
outperformed the lifting/lowering implementation with regard to transformation time per
document by a factor of up to 1:130.

An evolutionary reference ontology requires the representation of the changes between
the different ontology versions. In chapter 4, we have first discussed the requirements for
change representation for this thesis and have then provided a survey on approaches in this

9

145

field. We came to the conclusion that none of the approaches could fulfill all requirements and
we have therefore, proposed a hybrid, meta ontology based approach that provides atomic
and composite declarative change descriptions over the ontology graph in form of change
ontology instance. These change instances directly relate instances of a meta ontology of the
old and the new ontology version. This approach allows reasoning support over the changes
and both ontology versions by using standard reasoners and rule languages. We have also
presented the implementation of this approach. This high-level change representation is
accomplished with a complete axiom-based change-log which can be used for the justification
of logical invalidations.

When the ontology evolves also the annotations need to be adopted. We have first pro-
posed a complete language to modify the annotation paths in chapter 5. As a next step
we have discussed the problem of structural invalidation of annotation paths and provided
algorithms to check the paths for validity and to detect the type of invalidation. An invalid
path consists of at least one invalid step. An invalid step can be repaired by replacing the
referenced element with an existing element of the new ontology version. Such a replacement
can be computed by evaluating the changes between the old an the new ontology version and
may require to replace a more specific element of the old ontology version with a less specific
element of the new ontology version. We assume that a good replacement candidate is a
replacement where a minimum number of such abstractions is required. When the possible
repairs for each invalid step of an invalid path are computed those solutions can be used
to propose replacement candidates for the complete annotation path. The best replacement
candidates are those that require a minimum overall number of abstractions. We have finally
introduced an additional annotation maintenance scenario in a collaborative environment that
limits the human intervention by using mapping composition.

In addition to structural invalidations logical invalidations can occur. A logical invalid
annotation path expression is a structurally valid path expression, where the corresponding
annotation concept is unsatisfiable in the reference ontology. We have provided an in depth
analysis of the possible causes for logically invalid annotations in chapter 6. There are basically
two types of logical invalidations: local invalidations and non-local invalidations. We have
provided efficient detection methods for local and non-local invalidations. Those techniques
can be used for new annotations as well as for the maintenance of annotations after ontology
evolution. Our method not only identifies the annotations which are logically invalid, but also
narrows the inspection area to the shortest possible path and gives indications on the causes
of the invalidation for annotation creation and maintenance. The proposed algorithms are
built upon the functionality usually provided by generic reasoners for OWL ontologies, so
they are not restricted to a specific reasoner or ontology management system.

146 9 Conclusion

A logically valid concept does not yet guarantee that the semantics of the annotated
elements did not change. We have introduced the problem in chapter 7. We have shown that
the plain OWL ontology is not sufficient to detect such semantic changes. Therefore, we have
proposed to add explicit change-dependencies to the ontology. Those change-dependencies
define, when a concept or annotation gets invalid with regard to changes over other ontology
elements. We have proposed rules for the detection of such invalidations and presented an
implementation that directly operates on the change representation of chapter 4.

Finally we have shown how all the contributions for annotation, schema mapping, change
representation, annotation maintenance and semantic-change detection can be combined in
an illustrative case study in chapter 8.

Chapter10
Appendix

147

148 10 Appendix

1
<

?
x
m

l
v
e

rs
io

n
=

"1
.0

"
e

n
c
o
d

in
g

=
"U

T
F

-8
"

s
ta

n
d

a
lo

n
e

=
"n

o
"?

>

2
<

x
s
:s

c
h
e

m
a

x
m

ln
s
:x

s
=

"h
tt

p
:/

/w
w

w
.w

3
.o

rg
/2

0
0

1
/X

M
L

S
c
h
e

m
a
"

x
m

ln
s
:s

a
w

s
d
l=

"h
tt

p
:/

/w
w

w
.w

3
.o

rg
/n

s
/s

a
w

s
d
l"

e
le

m
e
n

tF
o

rm
D

e
fa

u
lt
=

"q
u

a
lif

ie
d
"

a
tt

ri
b

u
te

F
o

rm
D

e
f a

u
lt
=

"u
n

q
u

a
l if

ie
d
" >

3
<

x
s
:e

le
m

e
n

t
n

a
m

e
=

"i
n

v
o

ic
e
"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t"
>

4
<

! -
-

5
T

h
is

is
a

n
 X

M
L

-S
c
h
e

m
a

th
a

t
is

u
s
e
d

 b
y
 a

 c
o
m

p
a

n
y
 t

h
a

t
s
e
lls

o
n

ly
fu

rn
it
u

re
.

In
 a

d
d

it
io

n
 t

h
is

c
o
m

p
a

n
y
 s

e
lls

it
s
 g

o
o

d
 o

n
ly

to
 p

ri
v
a

te
 c

u
s
to

m
e
rs

.

6
--

>

7
<

x
s
:c

o
m

p
le

x
T

yp
e

>

8
<

x
s
:s

e
q

u
e

n
c
e
>

9
<

x
s
:e

le
m

e
n

t
n

a
m

e
=

"B
u

y
e

rI
n

fo
"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
B

u
y
e

r/
P

ri
v
a

te
B

u
y
e

r"
>

1
0

<
x
s
:c

o
m

p
le

x
T

yp
e

>

1
1

<
x
s
:s

e
q

u
e

n
c
e
>

1
2

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"F
ir
s
tn

a
m

e
"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
B

u
y
e

r/
P

ri
v
a

te
B

u
y
e

r/
h

a
s
F

ir
s
tn

a
m

e
/"

/>

1
3

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"L
a

s
tN

a
m

e
"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
B

u
y
e

r/
P

ri
v
a

te
B

u
y
e

r/
h

a
s
L
a

s
tN

a
m

e"
/>

1
4

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"A
d

d
re

s
s
"

ty
p

e
=

"A
d

d
re

s
s
T

yp
e

"
s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
B

u
y
e

r/
P

ri
v
a

te
B

u
y
e

r/
h

a
s
C

o
n

ta
c
t/
P

o
s
ta

lA
d

d
re

s
s"

/>

1
5

<
/x

s
:s

e
q

u
e

n
c
e
>

1
6

<
/x

s
:c

o
m

p
le

x
T

yp
e

>

1
7

<
/x

s
:e

le
m

e
n

t>

1
8

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"S
e

lll
e

rI
n

fo
"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
S

e
lle

r/
S

e
lle

r"
>

1
9

<
x
s
:c

o
m

p
le

x
T

yp
e

>

2
0

<
x
s
:s

e
q

u
e

n
c
e
>

2
1

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"S
e

lle
rC

o
m

p
a

n
y"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
S

e
lle

r/
S

e
lle

r/
h

a
s
C

o
m

p
a

n
y
/C

o
m

p
a

n
y"

/>

2
2

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"A
d

d
re

s
s
"

ty
p

e
=

"A
d

d
re

s
s
T

yp
e

"
s
a
w

s
d
l:
m

o
d

e
lR

e
f e

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
S

e
lle

r/
S

e
lle

r/
h

a
s
C

o
n

ta
c
t/
P

o
s
ta

lA
d

d
re

s
s"

/>

2
3

<
/x

s
:s

e
q

u
e

n
c
e
>

2
4

<
/x

s
:c

o
m

p
le

x
T

yp
e

>

2
5

<
/x

s
:e

le
m

e
n

t>

2
6

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"P
ro

d
u

c
ts

">

2
7

<
x
s
:c

o
m

p
le

x
T

yp
e

>

2
8

<
x
s
:c

h
o

ic
e

>

2
9

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"P
ro

d
u

c
t"

m
a
x
O

c
c
u
rs

=
"u

n
b

o
u

n
d

e
d
"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
P

ro
d

u
c
tL

is
t/
P

ro
d

u
c
tL

is
t/
h

a
s
It
e

m
/L

is
tI
te

m
">

3
0

<
x
s
:c

o
m

p
le

x
T

yp
e

>

3
1

<
x
s
:s

e
q

u
e

n
c
e
>

3
2

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"F
u

rn
it
u

re
ID

"
s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
P

ro
d

u
c
t L

is
t/
P

ro
d

u
c
tL

is
t/
h

a
s
It
e

m
/L

is
tI
te

m
/h

a
s
P

ro
d

u
c
t/
F

u
rn

it
u

re
/h

a
s
ID

"/
>

3
3

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"F
u

rn
it
u

re
D

e
s
c
ri
p

ti
o

n
"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"

/I
n

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
P

ro
d

u
c
tL

i s
t/
P

ro
d

u
c
tL

is
t/
h

a
s
It
e

m
/L

is
tI
te

m
/h

a
s
P

ro
d

u
c
t/
F

u
rn

it
u

re
/h

a
s
D

e
s
c
ri
p

ti
o

n
"/

>

3
4

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"q
u

a
n

ti
ty

"
s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
P

ro
d

u
c
tL

is
t/
P

ro
d

u
c
tL

is
t/
h

a
s
It
e

m
/L

is
tI
te

m
/h

a
s
Q

u
a

n
ti
ty

"/
>

3
5

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"s
in

g
le

N
e

tt
o

p
ri
c
e
E

u
ro

"
s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"

/I
n

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
P

ro
d

u
c
tL

is
t/
P

ro
d

u
c
tL

is
t/
h

a
s
It
e

m
/L

is
tI
te

m
/ h

a
s
P

ri
c
e
/N

e
tt

o
It

e
m

P
ri
c
e
/h

a
s
E

u
ro

V
a
lu

e
"/

>

3
6

<
/x

s
:s

e
q

u
e

n
c
e
>

3
7

<
/x

s
:c

o
m

p
le

x
T

yp
e

>

3
8

<
/x

s
:e

le
m

e
n

t>

3
9

<
/x

s
:c

h
o

ic
e

>

4
0

<
/x

s
:c

o
m

p
le

x
T

yp
e

>

Figure 1: Source of mismatch example source schema page 1

149

4
1

<
/x

s
:e

le
m

e
n
t>

4
2

<
x
s
:e

le
m

e
n
t

n
a
m

e
=

"G
u
a
ra

n
te

e
In

f o
" >

4
3

<
x
s
:c

o
m

p
le

x
T

yp
e

>

4
4

<
x
s
:a

tt
ri
b

u
te

n
a
m

e
=

"D
u
ra

ti
o

n
"

s
a
w

s
d
l:
m

o
d
e
lR

e
fe

re
n
c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n
t/
d
e
c
la

re
s
/G

e
n
e
ri
c
G

u
a
ra

n
te

e
/h

a
s
D

u
ra

ti
o

n
"/

>

4
5

<
x
s
:a

tt
ri
b

u
te

n
a
m

e
=

"T
yp

e
"

s
a
w

s
d
l:
m

o
d
e
lR

e
fe

re
n
c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n
t/
d
e
c
la

re
s
/G

e
n
e
ri
c
G

u
a
ra

n
te

e
/h

a
s
T

yp
e

"/
>

4
6

<
/x

s
:c

o
m

p
le

x
T

yp
e

>

4
7

<
/x

s
:e

le
m

e
n
t>

4
8

<
x
s
:e

le
m

e
n
t

n
a
m

e
=

"i
n

v
o

ic
e
M

e
ta

D
a
ta

">

4
9

<
x
s
:c

o
m

p
le

x
T

yp
e

>

5
0

<
x
s
:a

tt
ri
b

u
te

n
a
m

e
=

"I
n
v
o

ic
e
N

u
m

b
e
r"

s
a
w

s
d
l:
m

o
d
e
lR

e
fe

re
n
c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n
t/
h
a
s
ID

"/
>

5
1

<
x
s
:a

tt
ri
b

u
te

n
a
m

e
=

"I
n
v
o

ic
e
D

a
te

"
s
a
w

s
d
l:
m

o
d
e
lR

e
fe

re
n
c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n
t/
h
a
s
D

a
te

"/
>

5
2

<
/x

s
:c

o
m

p
le

x
T

yp
e

>

5
3

<
/x

s
:e

le
m

e
n
t>

5
4

<
/x

s
:s

e
q
u
e
n
c
e
>

5
5

<
/x

s
:c

o
m

p
le

x
T

yp
e

>

5
6

<
/x

s
:e

le
m

e
n
t>

5
7

<
x
s
:c

o
m

p
le

x
T

yp
e

n
a
m

e
=

"A
d
d
re

s
s
T

yp
e

" >

5
8

<
x
s
:s

e
q
u
e
n
c
e
>

5
9

<
x
s
:e

le
m

e
n
t

n
a
m

e
=

"S
tr

e
e
t"

s
a
w

s
d
l:
m

o
d
e
lR

e
fe

re
n
c
e
=

"/
P

o
s
ta

lA
d
d
re

s
s
/h

a
s
S

tr
e
e
t"

/>

6
0

<
x
s
:e

le
m

e
n
t

n
a
m

e
=

"z
ip

"
s
a
w

s
d
l:
m

o
d
e
lR

e
fe

re
n
c
e
=

"/
P

o
s
ta

lA
d
d
re

s
s
/h

a
s
Z

ip
"/

>

6
1

<
x
s
:e

le
m

e
n
t

n
a
m

e
=

"C
it
y"

s
a
w

s
d
l:
m

o
d
e
lR

e
fe

re
n
c
e
=

"/
P

o
s
ta

lA
d
d
re

s
s
/h

a
s
C

it
y"

/>

6
2

<
x
s
:e

le
m

e
n
t

n
a
m

e
=

"C
o
u
n
tr

y"
s
a
w

s
d
l:
m

o
d
e
lR

e
fe

re
n
c
e
=

"/
P

o
s
t a

lA
d
d
re

s
s
/h

a
s
C

o
u
n
tr

y"
/>

6
3

<
/x

s
:s

e
q
u
e
n
c
e
>

6
4

<
/x

s
:c

o
m

p
le

x
T

yp
e

>

6
5

<
/x

s
:s

c
h
e
m

a
>

6
6

Figure 2: Source of mismatch example source schema page 2

150 10 Appendix

1
<

?
x
m

l
v
e

rs
io

n
=

"1
.0

"
e

n
c
o
d

in
g

=
"U

T
F

-8
"

s
ta

n
d

a
lo

n
e

=
"n

o
"?

>

2
<

x
s
:s

c
h
e

m
a

x
m

ln
s
:x

s
=

"h
tt

p
:/

/w
w

w
.w

3
.o

rg
/2

0
0

1
/X

M
L

S
c
h
e

m
a
"

x
m

ln
s
:s

a
w

s
d
l=

"h
tt

p
:/

/w
w

w
.w

3
.o

rg
/n

s
/s

a
w

s
d
l"

e
le

m
e
n

tF
o

rm
D

e
fa

u
lt
=

"q
u

a
lif

ie
d
"

a
tt

ri
b

u
te

F
o

rm
D

e
fa

u
lt
=

"u
n

q
u

a
lif

ie
d
">

3
<

!-
-

4
T

h
is

is
a

n
 X

M
L

-S
c
h
e

m
a

th
a

t
is

u
s
e
d

 b
y
 a

 c
o
m

p
a

n
y
 t

h
a

t
s
e
lls

a
n

y
 k

in
d

 o
f

g
o

o
d

.
In

 a
d

d
it
io

n
 t

h
is

c
o
m

p
a

n
y
 s

e
lls

it
s
 g

o
o

d
 t

o
 a

n
y
 k

i n
d

 o
f

c
u
s
to

m
e
r.

5
--

>

6
<

x
s
:e

le
m

e
n

t
n

a
m

e
=

"i
n

v
o

ic
e
"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t"
>

7
<

x
s
:c

o
m

p
le

x
T

yp
e

>

8
<

x
s
:s

e
q

u
e

n
c
e
>

9
<

x
s
:e

le
m

e
n

t
n

a
m

e
=

"I
n

v
o

lv
e

d
P

a
rt

ie
s"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
In

v
o

lv
e

d
P

a
rt

y
/B

u
s
in

e
s
s
P

a
rt

y
/"

>

1
0

<
x
s
:c

o
m

p
le

x
T

yp
e

>

1
1

<
x
s
:s

e
q

u
e

n
c
e
>

1
2

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"B
u

y
e

rF
ir
s
tA

n
d

L
a

s
tN

a
m

e
"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

i c
e
D

o
c
u
m

e
n

t/
h

a
s
B

u
y
e

r/
B

u
y
e

r/
h

a
s
F

u
llN

a
m

e
/"

/>

1
3

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"S
e

lle
rC

o
m

p
a

n
y
N

a
m

e
"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
S

e
lle

r/
S

e
lle

r/
h

a
s
C

o
m

p
a

n
y
/C

o
m

p
a

n
y"

/>

1
4

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"S
tr

e
e

tO
fB

u
y
e

r"
s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
B

u
y
e

r/
B

u
y
e

r/
h

a
s
C

o
n

ta
c
t/
P

o
s
ta

lA
d

d
re

s
s
/h

a
s
S

tr
e

e
t"
/ >

1
5

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"z
ip

O
fB

u
y
e

r"
s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
B

u
y
e

r/
B

u
y
e

r/
h

a
s
C

o
n

ta
c
t/
P

o
s
ta

lA
d

d
re

s
s
/h

a
s
Z

ip
"/

>

1
6

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"C
it
y
O

fB
u

y
e

r"
s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
B

u
y
e

r/
B

u
y
e

r/
h

a
s
C

o
n

ta
c
t/
P

o
s
ta

lA
d

d
re

s
s
/h

a
s
C

it
y"

/>

1
7

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"C
o

u
n

tr
y
O

fB
u

y
e

r"
s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
B

u
y
e

r/
B

u
y
e

r/
h

a
s
C

o
n

ta
c
t/
P

o
s
ta

lA
d

d
re

s
s
/h

a
s
C

o
u

n
tr

y"
/>

1
8

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"S
tr

e
e

tO
fS

e
lle

r"
s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
S

e
lle

r/
S

e
lle

r/
h

a
s
C

o
n

ta
c
t/
P

o
s
ta

lA
d

d
re

s
s
/h

a
s
S

tr
e

e
t"

/>

1
9

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"z
ip

O
fS

e
lle

r"
s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
S

e
lle

r/
S

e
lle

r/
h

a
s
C

o
n

ta
c
t/
P

o
s
ta

lA
d

d
re

s
s
/h

a
s
Z

ip
"/

>

2
0

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"C
it
y
O

fS
e

lle
r"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
S

e
lle

r/
S

e
lle

r/
h

a
s
C

o
n

ta
c
t /
P

o
s
ta

lA
d

d
re

s
s
/h

a
s
C

it
y"

/>

2
1

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"C
o

u
n

tr
y
O

fS
e

lle
r"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
S

e
lle

r/
S

e
lle

r/
h

a
s
C

o
n

ta
c
t/
P

o
s
ta

lA
d

d
re

s
s
/h

a
s
C

o
u

n
tr

y"
/>

2
2

<
/x

s
:s

e
q

u
e

n
c
e
>

2
3

<
/x

s
:c

o
m

p
le

x
T

yp
e

>

2
4

<
/x

s
:e

le
m

e
n

t>

2
5

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"I
n

v
o

ic
e
It

e
m

"
m

a
x
O

c
c
u
rs

=
"u

n
b

o
u

n
d

e
d
"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
P

ro
d

u
c
tL

is
t/
P

ro
d

u
c
tL

is
t/
h

a
s
I t
e

m
/L

is
tI
te

m
">

2
6

<
x
s
:c

o
m

p
le

x
T

yp
e

>

2
7

<
x
s
:a

tt
ri
b

u
te

n
a

m
e
=

"P
ro

d
u

c
tI
d
"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
P

ro
d

u
c
tL

is
t/
P

ro
d

u
c
tL

is
t/
h

a
s
It
e

m
/L

is
tI
te

m
/ h

a
s
P

ro
d

u
c
t /
P

ro
d

u
c
t/
h

a
s
ID

"/
>

2
8

<
x
s
:a

tt
ri
b

u
te

n
a

m
e
=

"P
ro

d
u

c
tD

e
s
c
r i
p

ti
o

n
"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
P

ro
d

u
c
t L

is
t/
P

ro
d

u
c
tL

is
t/
h

a
s
It
e

m
/L

is
tI
te

m
/h

a
s
P

ro
d

u
c
t/
P

ro
d

u
c
t/
h

a
s
D

e
s
c
ri
p

ti
o

n

"/
>

2
9

<
x
s
:a

tt
ri
b

u
te

n
a

m
e
=

"q
u

a
n

ti
ty

"
s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
P

ro
d

u
c
tL

i s
t/
P

ro
d

u
c
tL

is
t/
h

a
s
It
e

m
/L

is
tI
te

m
/h

a
s
Q

u
a

n
ti
ty

"/
>

3
0

<
x
s
:a

tt
ri
b

u
te

n
a

m
e
=

"s
in

g
le

N
e

tt
o

p
ri
c
e
U

S
D

"
s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"

/I
n

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
P

ro
d

u
c
tL

is
t/
P

ro
d

u
c
tL

is
t/
h

a
s
I t
e

m
/L

is
tI
te

m
/h

a
s
P

ri
c
e
/N

e
tt

o
It

e
m

P
ri
c
e
/h

a
s
D

o
lla

rV
a
lu

e
"/

>

3
1

<
/x

s
:c

o
m

p
le

x
T

yp
e

>

3
2

<
/x

s
:e

le
m

e
n

t>

3
3

<
x
s
:c

h
o

ic
e

>

3
4

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"G
o

ld
G

u
a

re
n

te
e

D
u

ra
ti
o

n
"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
d

e
c
la

re
s
/G

o
ld

G
u

a
re

n
te

e
/h

a
s
D

u
ra

ti
o

n
">

<
/x

s
:e

le
m

e
n

t>

3
5

<
x
s
:e

le
m

e
n

t
n

a
m

e
=

"P
la

ti
n

G
u

a
re

n
te

e
D

u
ra

ti
o

n
"

s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
d

e
c
la

re
s
/P

la
ti
n

G
u

a
re

n
te

e
/h

a
s
D

u
ra

ti
o

n
">

<
/x

s
:e

le
m

e
n

t>

3
6

<
/x

s
:c

h
o

ic
e

>

3
7

<
/x

s
:s

e
q

u
e

n
c
e
>

3
8

<
x
s
:a

tt
ri
b

u
te

n
a

m
e
=

"I
n

v
o

ic
e
N

u
m

b
e

r"
s
a
w

s
d
l:
m

o
d

e
lR

e
fe

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
ID

"/
>

3
9

<
x
s
:a

tt
ri
b

u
te

n
a

m
e
=

"I
n

v
o

ic
e
D

a
te

"
s
a
w

s
d
l:
m

o
d

e
lR

e
f e

re
n

c
e
=

"/
In

v
o

ic
e
D

o
c
u
m

e
n

t/
h

a
s
D

a
te

"/
>

4
0

<
/x

s
:c

o
m

p
le

x
T

yp
e

>

4
1

<
/x

s
:e

le
m

e
n

t>

4
2

<
/x

s
:s

c
h
e

m
a

>

4
3

Figure 3: Source of mismatch example target schema

Bibliography

[1] Alsayed Algergawy, Richi Nayak, and Gunter Saake. Xml schema element similarity
measures: A schema matching context. In Proceedings of the Confederated International
Conferences, CoopIS, DOA, IS, and ODBASE 2009 on On the Move to Meaningful Internet
Systems: Part II, OTM ’09, pages 1246–1253, Berlin, Heidelberg, 2009. Springer-Verlag. 27

[2] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm. Schema and
ontology matching with COMA++. In Proc. of the 2005 ACM SIGMOD Int’l. Conf. on
Management of Data, pages 906–908, 2005. 21, 23, 24, 30, 94

[3] Dave Beckett and Jeen Broekstra. SPARQL query results XML format. W3C recommen-
dation, W3C, January 2008. http://www.w3.org/TR/2008/REC-rdf-sparql-XMLres-
20080115/. 49

[4] Domenico Beneventano, Sabina El Haoum, and Daniele Montanari. Mapping of hetero-
geneous schemata, business structures, and terminologies. In DEXA ’07: Proceedings of
the 18th International Conference on Database and Expert Systems Applications, pages 412–
418, Washington, DC, USA, 2007. IEEE Computer Society. 19

[5] David Booth and Canyang Kevin Liu. Web services description language
(WSDL) version 2.0 part 0: Primer. W3C recommendation, W3C, June 2007.
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626. 3

[6] Tim Bray, Jean Paoli, Eve Maler, François Yergeau, and C. M. Sperberg-McQueen. Exten-
sible markup language (XML) 1.0 (fifth edition). W3C recommendation, W3C, November
2008. http://www.w3.org/TR/2008/REC-xml-20081126/. 7

[7] Dan Brickley and Ramanathan V. Guha. Rdf vocabulary description language 1.0: Rdf
schema. W3C recommendation, W3C, 2 2004. 9, 19, 62

[8] Peter Buneman, Adriane P. Chapman, and James Cheney. Provenance management in
curated databases. In Proc. of SIGMOD’06, pages 539–550. ACM, 2006. 131

[9] Jean-Paul Calbimonte, Fabio Porto, and C. Maria Keet. Functional dependencies in owl
abox. In Angelo Brayner, editor, Proc. of SBBD’09, pages 16–30. SBC, 2009. 130

151

152 Bibliography

[10] Giorgio Callegari, Michele Missikoff, Osimi M, and Francesco Taglino. Semantic an-
notation language and tool for information and business processes - appendix f: User
manual, athena deliverable d.a3.3 available at the leks (laboratory for enterprise know-
eldge and systems) web site http://leks-pub.iasi.cnr.it/astar/. Technical report. 19

[11] Silvana Castano, Valeria De Antonellis, and Sabrina De Capitani di Vimercati. Global
viewing of heterogeneous data sources. IEEE Trans. on Knowl. and Data Eng., 13:277–297,
March 2001. 21

[12] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer Widom.
Change detection in hierarchically structured information. SIGMOD Rec., 25:493–504,
June 1996. 63

[13] Chuming Chen and Manton M. Matthews. A new approach to managing the evolution
of owl ontologies. In Hamid R. Arabnia and Andy Marsh, editors, SWWS, pages 57–63.
CSREA Press, 2008. 68, 71, 72, 73

[14] James Cheney, Amal Ahmed, and Umut Acar. Provenance as dependency analysis. In
Marcelo Arenas and Michael Schwartzbach, editors, Database Programming Languages,
volume 4797 of LNCS, pages 138–152. Springer, 2007. 131

[15] James Clark. XSL transformations (XSLT) version 1.0. W3C recommendation, W3C,
November 1999. http://www.w3.org/TR/1999/REC-xslt-19991116. 4, 48

[16] Oscar Corcho, Catherine Roussey, Luis Manuel Vilches Blazquez, and Ivan Perez.
Pattern-based owl ontology debugging guidelines. In Proceedings of WOP2009 collocated
with ISWC2009, volume 516. CEUR-WS.org, November 2009. 116

[17] Oscar Corcho, Catherine Roussey, Ondrej Zamazal, and francois scharffe. SPARQL-
based Detection of Antipatterns in OWL Ontologies, October 2010. Proceedings of the
EKAW2010 Poster and Demo Track. 116

[18] Mathieu d’Aquin, Anne Schlicht, Heiner Stuckenschmidt, and Marta Sabou. Ontology
modularization for knowledge selection: Experiments and evaluations. In DEXA, pages
874–883, 2007. 120

[19] Mike Dean and Guus Schreiber. OWL web ontology language reference. W3C
recommendation, W3C, February 2004. http://www.w3.org/TR/2004/REC-owl-ref-
20040210/. 2, 9, 11

[20] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Halevy, and Pedro Domingos.
imap: discovering complex semantic matches between database schemas. In Proceedings
of the 2004 ACM SIGMOD international conference on Management of data, SIGMOD ’04,
pages 383–394, New York, NY, USA, 2004. ACM. 25, 26

153

[21] Hong-Hai Do and Erhard Rahm. Coma: a system for flexible combination of schema
matching approaches. In Proceedings of the 28th international conference on Very Large Data
Bases, VLDB ’02, pages 610–621. VLDB Endowment, 2002. xiii, 21, 23, 24, 28, 29, 30

[22] AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling schemas of disparate
data sources: a machine-learning approach. In Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, SIGMOD ’01, pages 509–520, New York,
NY, USA, 2001. ACM. 21

[23] Fabien Duchateau, Zohra Bellahsene, and Remi Coletta. A flexible approach for plan-
ning schema matching algorithms. In Proceedings of the OTM 2008 Confederated Interna-
tional Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008. Part I on On the Move to
Meaningful Internet Systems:, OTM ’08, pages 249–264, Berlin, Heidelberg, 2008. Springer-
Verlag. 21, 23

[24] Johann Eder and Julius Koepke. Towards semantic interoperability in an evolving en-
vironment. In Proceedings of the 15th International Conference on Concurrent Enterprising
(ICEt’09), 2009. 1, 3

[25] Johann Eder and Christian Koncilia. Modelling changes in ontologies. In On The Move -
Federated Conferences (OTM 2004), pages 662–673, Agia Napa, Cyprus, 10 2004. Springer
Verlag. 68, 71, 72, 73

[26] Johann Eder, Marek Lehmann, Christian Koncilia, and Horst Pichler. Using ontologies
to compose transformations of xml schema based documents. In 16th Conference on
Advanced Information Systems Engineering (CAiSE 2004), INTEROP-EMOI Workshop, pages
315–318, Riga, Latvia, 6 2004. Faculty of Computer Science and Information Technology.
21

[27] Johann Eder and Karl Wiggisser. Change detection in ontologies using dag compari-
son. In John Krogstie, Andreas Opdahl, and Guttorm Sindre, editors, Proc. of CAiSE’07,
volume 4495 of LNCS, pages 21–35. Springer, 2007. 63, 71, 72, 73, 79

[28] David W. Embley, Li Xu, and Yihong Ding. Automatic direct and indirect schema map-
ping: experiences and lessons learned. SIGMOD Rec., 33:14–19, December 2004. 26

[29] Jérôme Euzenat. An api for ontology alignment. In Sheila McIlraith, Dimitris Plex-
ousakis, and Frank van Harmelen, editors, The Semantic Web - ISWC 2004, volume 3298
of Lecture Notes in Computer Science, pages 698–712. Springer Berlin / Heidelberg, 2004.
69, 71, 72

[30] Richard Fikes and Tom Kehler. The role of frame-based representation in reasoning.
Commun. ACM, 28:904–920, September 1985. 8

[31] Fausto Giunchiglia, Maurizio Marchese, and Ilya Zaihrayeu. Encoding classifications
into lightweight ontologies. In ESWC, pages 80–94, 2006. 63

154 Bibliography

[32] Birte Glimm, Sebastian Rudolph, and Johanna Völker. Integrated metamodeling and
diagnosis in owl 2. In Proceedings of the 9th international semantic web conference on The
semantic web - Volume Part I, ISWC’10, pages 257–272, Berlin, Heidelberg, 2010. Springer-
Verlag. 57

[33] Herbert Groiss and Johann Eder. Workflow systems for inter-organizational business
processes. SIGGROUP Bull., 18:23–26, December 1997. 1

[34] Anika Groß, Michael Hartung, Toralf Kirsten, and Erhard Rahm. Mapping Composi-
tion for Matching Large Life Science Ontologies. In Proceedings of the 2nd International
Conference on Biomedical Ontology, ICBO 2011, 2011. 94

[35] Enrico Del Grosso, Michele Missikoff, Fabrizio Smith, and Francesco Taglino. Semantic
services for business documents reconciliation. In Proceedings of the WORKSHOP Inter-
operability through Semantic Data and Service Integration Co-located with SEBD, pages 1–8,
Camogli (Genova), Italy, 2009. 2

[36] Thomas R. Gruber. A translation approach to portable ontology specifications. Knowl.
Acquis., 5(2):199–220, 1993. 8

[37] Peter Haase and Ljiljana Stojanovic. Consistent evolution of owl ontologies. In Asunción
Gómez-Pérez and Jérôme Euzenat, editors, The Semantic Web: Research and Applications,
volume 3532 of Lecture Notes in Computer Science, pages 91–133. Springer Berlin / Hei-
delberg, 2005. 10.1007/1143105313. 61, 71, 72, 87, 130

[38] Michael Hartung, Anika Gross, and Erhard Rahm. Rule-based generation of diff evo-
lution mappings between ontology versions. CoRR, abs/1010.0122, 2010. 64, 71, 72,
73

[39] Bin He and Kevin Chen-Chuan Chang. Automatic complex schema matching across web
query interfaces: A correlation mining approach. ACM Trans. Database Syst., 31:346–395,
March 2006. 25, 26

[40] Zhisheng Huang and Heiner Stuckenschmidt. Reasoning with multi-version ontologies:
A temporal logic approach. In Yolanda Gil, Enrico Motta, V. Richard Benjamins, and
Mark A. Musen, editors, The Semantic Web - ISWC 2005, number 3729 in LNCS, pages
398–412, Glaway, Ireland, November 2005. Springer. 70, 71, 72, 73

[41] Buhwan Jeong, Daewon Lee, Hyunbo Cho, and Jaewook Lee. A novel method for mea-
suring semantic similarity for xml schema matching. Expert Syst. Appl., 34:1651–1658,
April 2008. 27

[42] Haifeng Jiang, Howard Ho, Lucian Popa, and Wook-Shin Han. Mapping-driven xml
transformation. In WWW ’07: Proceedings of the 16th international conference on World Wide
Web, pages 1063–1072, New York, NY, USA, 2007. ACM. 11, 19

155

[43] Longfei Jin and Lei Liu. An ontology slicing method based on ontology definition meta-
model. In BIS, pages 209–219, 2007. 131

[44] G. Friedrich K. Shchekotykhin, P. Rodler. Balancing brave and cautions query strategies
in ontology debugging. In Proceedings of DX-2011 Workshop, pages 122–130. DX Society,
2011. 116

[45] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin. Finding all justi-
fications of owl dl entailments. In Karl Aberer, Key-Sun Choi, Natasha Fridman Noy,
Dean Allemang, Kyung-Il Lee, Lyndon J. B. Nixon, Jennifer Golbeck, Peter Mika, Diana
Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux, editors,
ISWC/ASWC, volume 4825 of Lecture Notes in Computer Science, pages 267–280. Springer,
2007. xiii, 113, 114, 116

[46] Asad Masood Khattak, Khalid Latif, Manhyung Han, Sungyoung Lee, Young-Koo Lee,
and Hyoung-Il Kim. Change tracer: Tracking changes in web ontologies. In ICTAI, pages
449–456. IEEE Computer Society, 2009. 66, 71, 72

[47] Asad Masood Khattak, Khalid Latif, Sharifullah Khan, and Nabeel Ahmed. Managing
change history in web ontologies. Semantics, Knowledge and Grid, International Conference
on, 0:347–350, 2008. 65

[48] Toralf Kirsten, Michael Hartung, Anika Gross, and Erhard Rahm. Efficient management
of biomedical ontology versions. In Robert Meersman, Pilar Herrero, and Tharam S.
Dillon, editors, OTM Workshops, volume 5872 of Lecture Notes in Computer Science, pages
574–583. Springer, 2009. 69, 71, 72

[49] Michael Klein and Dieter Fensel. Ontology versioning on the semantic web. In Proc. 1st
Int. Semantic Web Working Symp., pages 75–91, Stanford University, CA, USA, 2001. 62

[50] Michael Klein, Dieter Fensel, van Harmelen Frank, and Ian Horrocks. The relation be-
tween ontologies and xml schemata, August 2000. 20

[51] Michel C. A. Klein, Dieter Fensel, Atanas Kiryakov, and Damyan Ognyanov. Ontology
versioning and change detection on the web. In EKAW ’02: Proceedings of the 13th Interna-
tional Conference on Knowledge Engineering and Knowledge Management. Ontologies and the
Semantic Web, pages 197–212, London, UK, 2002. Springer-Verlag. 62, 72, 73

[52] Peep Küngas and Marlon Dumas. Cost-effective semantic annotation of xml schemas
and web service interfaces. Services Computing, IEEE International Conference on, 0:372–
379, 2009. 20

[53] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomorphism problem: its
structural complexity. Birkhauser Verlag, Basel, Switzerland, Switzerland, 1993. 62

156 Bibliography

[54] Julius Koepke and Hannes Hannig. Performance evaluation of declarative annotation-
based matching and mapping vs. lifting/lowering transformations. Technical report,
Alpen Adria Universität Klagenfurt, 2011. 50

[55] Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Logical difference and mod-
ule extraction with cex and mex. In Proceedings of the 21st International Workshop on
Description Logics (DL2008), volume 353 of CEUR-WS, 2008. 64, 71, 72

[56] Jacek Kopecký, Tomas Vitvar, Carine Bournez, and Joel Farrell. Sawsdl: Semantic anno-
tations for wsdl and xml schema. IEEE Internet Computing, 11(6):60–67, 2007. 3, 11

[57] Julius Köpke and Johann Eder. Semantic annotation of xml-schema for document trans-
formations. In Robert Meersman, Tharam Dillon, and Pilar Herrero, editors, Proc. of
OTM’10 Workshops, volume 6428 of LNCS, pages 219–228. Springer, 2010. 3, 11, 143

[58] Julius Köpke and Johann Eder. Semantic invalidation of annotations due to ontology
evolution. In OTM Conferences (2), pages 763–780, 2011. 3, 119, 143, 144

[59] Julius Köpke and Johann Eder. Logical invalidations of semantic annotations. In To
appear in Proc. CAiSE’12, Gdansk, Poland, 6 2012. Springer. 3, 97, 144

[60] Markus Krötzsch, Frantisek Simancik, and Ian Horrocks. A description logic primer.
CoRR, abs/1201.4089, 2012. 10

[61] Jianguo Lu, Ju Wang, and Shengrui Wang. Xml schema matching. International Journal of
Software Engineering and Knowledge Engineering, 17(5):575–597, 2007. 27

[62] Luong, H, Dieng-Kuntz, and R. A rule-based approach for semantic annotation evolu-
tion. Computational Intelligence, 23(3):320–338, August 2007. 87

[63] Jayant Madhavan, Philip Bernstein, and Erhard Rahm. Generic schema matching with
cupid. In In The VLDB Journal, pages 49–58, 2001. 21

[64] Kuhanandha Mahalingam, Michael, and N. Huhns. Ontology tools for semantic reconcil-
iation in distributed heterogeneous information environments. In Intelligent Automation
and Soft Computing, 1999. 2

[65] Deborah L. McGuinness, Richard Fikes, James Hendler, and Lynn Andrea Stein.
Daml+oil: An ontology language for the semantic web. IEEE Intelligent Systems, 17:72–80,
2002. 62

[66] Eric Miller and Frank Manola. RDF primer. W3C recommendation, W3C, February 2004.
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/. 1, 3, 11, 48

[67] Marvin Minsky. A framework for representing knowledge. Technical report, Cambridge,
MA, USA, 1974. 8

157

[68] M. Missikoff, F. Schiappelli, and F. Taglino. A controlled language for semantic annota-
tion and interoperability in e-business applications. In Proc. of ISWC-03, pages 1–6, 2003.
19

[69] Michele Missikoff and Francesco Taglino. Semantic mismatches hampering data ex-
change between heterogeneous web services. In W3C Workshop on Frameworks for Seman-
tics in Web Services, 2005. 20, 38

[70] Boris Motik. On the properties of metamodeling in owl. In In 4th Int. Semantic Web Conf.
(ISWC 2005, pages 548–562, 2005. 58

[71] Natalya F. Noy and Mark A. Musen. Promptdiff: a fixed-point algorithm for comparing
ontology versions. In Eighteenth national conference on Artificial intelligence, pages 744–750,
Menlo Park, CA, USA, 2002. American Association for Artificial Intelligence. 62, 71, 72,
73, 79

[72] Natalya Fridman Noy and Mark A. Musen. Prompt: Algorithm and tool for automated
ontology merging and alignment. In Proceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelli-
gence, pages 450–455. AAAI Press / The MIT Press, 2000. 62

[73] Natalya Fridman Noy and Mark A. Musen. Specifying ontology views by traversal. In
International Semantic Web Conference, pages 713–725, 2004. 120

[74] Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries. IEEE, New York, 1990. 7

[75] W3C OWL Working Group. OWL 2 Web Ontology Language: Docu-
ment Overview. W3C Recommendation, 27 October 2009. Available at
http://www.w3.org/TR/owl2-overview/. 9, 98

[76] Raúl Palma, Peter Haase, Óscar Corcho, and Asunción Gómez-Pérez. Change repre-
sentation for owl 2 ontologies. In Rinke Hoekstra and Peter F. Patel-Schneider, editors,
OWLED, volume 529 of CEUR Workshop Proceedings. CEUR-WS.org, 2008. xiii, 66, 67, 71,
72, 73

[77] B. Parsia, E. Sirin, and A. Kalyanpur. Debugging owl ontologies. In Proc. 14th Interna-
tional Conf. World Wide Web, pages 633–640. ACM Press, 2005. 99, 114, 116

[78] Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and Mike Dean.
SWRL: A semantic web rule language combining OWL and RuleML. W3C submission,
W3C, May 2004. http://www.w3.org/TR/2008/REC-rdf-sparql-XMLres-20080115/. 30,
50, 70

[79] Mikalai Yatskevich Pavel Shvaiko, Fausto Giunchiglia. Semantic Matching with S-Match,
volume Part 2, pages 183–202. 2010. 21, 63, 71, 72

158 Bibliography

[80] Peter Plessers and Olga De Troyer. Ontology change detection using a version log. In
Yolanda Gil, Enrico Motta, V. Richard Benjamins, and Mark A. Musen, editors, Interna-
tional Semantic Web Conference, volume 3729 of Lecture Notes in Computer Science, pages
578–592. Springer, 2005. xiii, 65, 71, 72

[81] Lucian Popa, Yannis Velegrakis, Mauricio A. Hernández, Renée J. Miller, and Ronald
Fagin. Translating web data. In Proceedings of the 28th international conference on Very
Large Data Bases, VLDB ’02, pages 598–609. VLDB Endowment, 2002. 22

[82] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF. W3C
recommendation, W3C, January 2008. http://www.w3.org/TR/2008/REC-rdf-sparql-
query-20080115/. 49

[83] Li Qin and Vijayalakshmi Atluri. Evaluating the validity of data instances against ontol-
ogy evolution over the semantic web. Information and Software Technology, 2008. 131

[84] Erhard Rahm. Towards large-scale schema and ontology matching. In Zohra Bellahsene,
Angela Bonifati, and Erhard Rahm, editors, Schema Matching and Mapping, Data-Centric
Systems and Applications, pages 3–27. Springer Berlin Heidelberg, 2011. 10.1007/978-3-
642-16518-41. 21, 22

[85] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. The VLDB Journal, 10(4):334–350, 2001. 14, 19, 21, 22, 23, 24

[86] R. Reiter. A theory of diagnosis from first principles. In Joerg Siekmann, editor, 8th
International Conference on Automated Deduction, volume 230 of Lecture Notes in Computer
Science, pages 153–153. Springer Berlin / Heidelberg, 1986. 10.1007/3-540-16780-387. 116

[87] Khalid Saleem and Zohra Bellahsene. Complex schema match discovery and validation
through collaboration. In Proceedings of the Confederated International Conferences, CoopIS,
DOA, IS, and ODBASE 2009 on On the Move to Meaningful Internet Systems: Part I, OTM
’09, pages 406–413, Berlin, Heidelberg, 2009. Springer-Verlag. 25, 26

[88] Khalid Saleem, Zohra Bellahsene, and Ela Hunt. Porsche: Performance oriented schema
mediation. Inf. Syst., 33:637–657, November 2008. 26

[89] Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the debug-
ging of description logic terminologies. In Georg Gottlob and Toby Walsh, editors, IJCAI,
pages 355–362. Morgan Kaufmann, 2003. 99, 113, 116

[90] Sana Sellami, Aicha-Nabila Benharkat, Rami Rifaieh, and Youssef Amghar. Advanced
internet based systems and applications. chapter Extension of Schema Matching Plat-
form ASMADE to Constraints and Mapping Expression, pages 223–234. Springer-Verlag,
Berlin, Heidelberg, 2009. 27

[91] Sana Sellami, Nabila Benharkat, Rami Rifaieh, and Youssef Amghar. Schema Matching
for Document Exchange: A Constraint Based Approach. In THE INTERNATIONAL

159

CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS
(SITIS’ 2006), pages 299–309. springer Verlag, LNCS series, December 2006. 27

[92] Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based matching approaches. In
Stefano Spaccapietra, editor, Journal on Data Semantics IV, volume 3730 of Lecture Notes in
Computer Science, pages 146–171. Springer Berlin / Heidelberg, 2005. 10.1007/116034125.
21, 22

[93] Ljiljana Stojanovic, Alexander Maedche, Boris Motik, and Nenad Stojanovic. User-driven
ontology evolution management. In EKAW ’02: Proceedings of the 13th International Con-
ference on Knowledge Engineering and Knowledge Management. Ontologies and the Semantic
Web, pages 285–300, London, UK, 2002. Springer-Verlag. 60, 70, 72

[94] Nenad Stojanovic, Alexander Maedche, Steffen Staab, Rudi Studer, and York Sure. Seal -
a framework for developing semantic portals. In K-CAP 2001 - First Intenational Conference
on Knowledge Capture, Victoria, Canada, Oct. 21-23, 2001. ACM, 2001. 60

[95] Marcin Szymczak. Semantic annotation-based xml document transformation. Master-
thesis, Alpen Adria Universität Klagenfurt, Universitätsstrasse 65-67, 9020 Klagenfurt,
September 2010. 44

[96] Marcin Szymczak and Julius Koepke. Matching methods for semantic annotation-based
xml document transformations. In To appear in Proceedings of the IWIFSGN’2011, Warsaw,
September 2011. 3, 44, 143

[97] Victoria Uren, Philipp Cimiano, José Iria, Siegfried Handschuh, Maria Vargas-Vera, En-
rico Motta, and Fabio Ciravegna. Semantic annotation for knowledge management:
Requirements and a survey of the state of the art. Web Semantics: Science, Services and
Agents on the World Wide Web, 4(1):14 – 28, 2006. 11

[98] M. Vujasinovic, N. Ivezic, B. Kulvatunyou, E. Barkmeyer, M. Missikoff, F. Taglino, Z. Mar-
janovic, and I. Miletic. Semantic mediation for standard-based b2b interoperability. In-
ternet Computing, IEEE, 14(1):52 –63, jan.-feb. 2010. 5, 19, 43

[99] Evan K. Wallace and Christine Golbreich. OWL 2 web ontology lan-
guage new features and rationale. Technical report, W3C, October 2009.
http://www.w3.org/TR/2009/REC-owl2-new-features-20091027/. 57

[100] Priscilla Walmsley and David C. Fallside. XML schema part 0: Primer second edi-
tion. W3C recommendation, W3C, October 2004. http://www.w3.org/TR/2004/REC-
xmlschema-0-20041028/. 3, 7

[101] Hai H. Wang, Natasha Noy, Alan Rector, Mark Musen, Timothy Redmond, Daniel Rubin,
Samson Tu, Tania Tudorache, Nick Drummond, Matthew Horridge, and Julian Seiden-
berg. Frames and OWL Side by Side. In 9th International Protégé Conference, 2006. 57

160 Bibliography

[102] An Yuan, Alex Borgida, and John Mylopoulos. Discovering and Maintatining Seman-
tic Mappings between XML Schemas and Ontologies. Journal of Computer Science and
Engeneering, 5:1–29, December 2007. 19, 20

