
Towards Ontology Guided Translation of
Activity-Centric Processes to GSM

Julius Köpke1,2, Jianwen Su1

1 Department of Computer Science, UC Santa Barbara, USA, su@cs.ucsb.edu
2 Alpen-Adria Universität, Klagenfurt, Austria, julius.koepke@aau.at??

Abstract. There exist two major modeling paradigms for business pro-
cess modeling: The predominant activity centric one and the artifact cen-
tric paradigm. Both are suitable for modeling and for executing business
processes. However, process models are typically designed from different
perspectives. Current translation methods operate on the syntactic level,
preserving the point of view of the source process. The results of such
translations are not particularly useful, understandable and insightful
for stakeholders. In this paper we motivate the need for ontology-guided
translations by comparing the results of a purely syntactic translation
with a manual translation. We discuss shortcomings of the generated so-
lutions and propose an ontology-based framework and sketch correspond-
ing translation method for the generation of semantic translations, which
allow to incorporate the point of view of the target modeling paradigm.

Key words: Process Translation, Artifact Centric BPM, Guard Stage
Milestone, GSM, Semantic Process Abstraction

1 Introduction

In business process modeling, traditionally the activity- or control-flow perspec-
tive achieved the major attention, while the data perspective was addressed in
a much lesser degree. This resulted in the predominant activity-centric model-
ing paradigm, where the data perspective is treated as an implementation issue
rather than a modeling concern.

Data-centric approaches in general and the artifact-centric modeling paradigm
in particular have emerged and gained an increasing momentum in the last
decade. The essence is an integrated modeling method for both perspectives. As a
result both competing paradigms are attracting users. When inter-organizational
cooperations are concerned it is likely going to happen that interorganiza-
tional processes between companies that use activity-centric and the ones using
artifact-centric modeling methods need to be established. Process views [7, 6, 14]
have proven their usefulness to support activity-centric inter-organizational pro-
cesses. Naturally, a new kind of “translating views” that allow the seamless

?? Research conducted while visiting UC SB and supported by the Austrian Science
Fund (FWF) under grant J-3609.

2 Julius Köpke, Jianwen Su

interoperation of activity-centric and artifact-centric processes to allow cross
organizational interoperability is worth exploring.

In this paper we consider a particular sub-problem, namely “meaningful”
translation between activity-centric and artifact-centric processes. We argue that
in an inter-organizational and therefore heterogeneous setting existing transla-
tion approaches [8, 15, 21] are not desirable since they only address the syntactic
aspect rather than taking into consideration domain knowledge. Therefore, we
aim for a “good” artifact-centric representation of some activity-centric source
process, where “good” means using the modeling capabilities of the target lan-
guage and, since we are in an inter-organizational setting, agreed terms of the
application domain.

In this paper we initiate the study by focusing on the translation from ex-
ecutable activity-centric processes to declarative Guard Stage Milestone [12]
(GSM) models. In this scenario the activity-centric representation (e.g. BPEL)
also specifies the data perspective for the execution of the process. However,
the activity-centric process does not define any explicit relation between process
variables and relevant data entities of the business domain, nor there is any in-
formation about relevant stages of business objects. As a consequence, a simple
syntactic translation approach results in an executable target process that does
not relate to real-world business entities and their states. Additionally, the target
process is not taking advantage of GSM’s capability of stage hierarchies.

The core idea of our approach to overcome these limitations is to make rele-
vant domain knowledge accessible to the translation process by using ontologies
and semantic annotations. Since ontologies are gaining popularity in the busi-
ness world (e.g. in the tourism sector the open travel alliance ontology or in the
insurance industry, the ACORD ontology to name only two), we think that the
required additional effort to provide these descriptions is reasonable. As a con-
sequence the translation of a business process remains automatic, while we can
generate meaningful translations that refer to agreed terms of the domain regard-
ing both, the activity- and the data-perspective including suitable abstractions
thereof.

The contributions of this paper are the following. We present a novel syntac-
tic translation approach for block-structured processes with data that produces
hierarchic GSM models based on the hierarchy of the input process in Sect. 2.3.
Then we discuss the weaknesses of syntactic translations in Sect. 2.4. We intro-
duce a framework for the definitions of relevant semantics based on semantic
annotations and a reference ontology in Sect. 3. A corresponding novel semantic
translation method is sketched in Sect. 4. Finally, Sect. 5 discusses related work
and Sect. 6 concludes the paper.

2 Motivations

We illustrate the need for domain knowledge to achieve meaningful translations
by examining the output of a syntactic translation approach in comparison to a
translation that could be provided by a domain expert.

Towards Ontology Guided Translation of Activity-Centric Processes to GSM 3

2.1 Activity-Centric Process Model

We base our activity-centric source process model on the essentials of BPEL
and inter-organizational view approaches [7, 6, 14], following block-structured
processes which can be represented as trees. Supporting the typical control-flow
constructs sequence (SEQ), parallel (PAR), loop (LOOP) and decision nodes
(XOR). In the usual graph based representation PAR, LOOP , XOR-blocks
are represented by corresponding split− and join− nodes. See examples on
the left of Fig. 1. To enforce the block-structure in the graph representation,
each split node must have its corresponding join node. Activities are executed
by activity-steps, which may occur as leaf nodes in the tree-representation. The
data perspective is modeled by declaring process variables (literal or XML-Type)
and by specifying, which activity-step reads and writes to what variables and
by defining conditions of XOR- or LOOP blocks in form of boolean expressions
over process variables. For example the XOR-split node in Fig. 1 may have the
Boolean condition $a > 10 or $b = 1, where $a and $b are variables of the
process. The activity step A may be defined to read $b and write to $a.

2.2 Guard Stage Milestone (GSM)

We briefly discuss the essentials of Guard Stage Milestone (GSM) relevant for
this work here and refer the reader to [12, 4] for all details. A process is modeled in
form of artifacts, where each artifact has a data schema holding data attributes
and state attributes, and a life-cycle definition. GSM life-cycles are based on
guards, stages and milestones. In the graphical representation (see Fig. 1), guards
are depicted as diamonds, stages as rounded boxes with optional labels and
milestone are depicted as circles. Guards, define when a particular stage becomes
active, milestones define, when a stage is completed. Stages can be nested, where
stages at leaf-level contain service calls for task execution. Guards and milestones
may have labels and are specified by sentries. Sentries are defined in form of
Event Condition (over the data schema) Action (ECA) Rules of the form “on
event if condition”, “on event” or “if condition”. Events may be internal (such
as achieving of a guard or a milestone) or external such as the completion event
of a service call. Achieving events of sentries are denoted by the prefix + and
their invalidation by the prefix −, respectively.

2.3 A Syntactic Translation Approach

Given a block structured activity centric process model as input, our syntactic
translation is based on a set of transformation rules that transform each block-
type to its GSM representation as shown in Fig. 1.

Translation Rules A sequence < A,B > is transformed to two stages A′

and B′, where the guard of B′ gets activated after the milestone of A′ is reached
(B′.Guard = on+A′.Milestone). If A refers to an activity-step, then A′ contains
a service call and the milestone of A′ is reached on the completion event of

4 Julius Köpke, Jianwen Su

A A‘B B‘SEQ

XOR

PAR

LOOP

B‘.Guard: on +A‘.Milestone

A

A

A‘

A‘

L‘‘

B‘

B‘

A‘

B

B

X

+

X

+

A‘.Guard: on +X‘ if X.EXP
B‘.Guard: on +X‘ if !X.EXP
X‘.Milestone: on +A‘.Milestone

X‘

P‘

L‘

A‘.Guard = B‘.Guard = on +P‘
P‘.Milestone: on +A‘.Milestone if B‘.Milestone

A

L L

L‘.Milestone: on +L‘‘.Milestone if !L.EXP
L‘‘.Guard1: on +L‘
L‘‘.Guard2: on +A‘.Milestone
L‘‘.Milestone: on L‘‘:completed
A‘.Guard: on +L‘‘.Milestone if L.EXP

 on +B‘.Milestone if A‘.Milestone

on +B‘.Milestone

Fig. 1. Syntactic Transformation Rules

the service in A. Otherwise, the milestone of A′ is reached after achieving the
milestone of the nested stage.

A XOR node with the sub-blocks A and B is translated to an anonymous
stage X ′ with two sub stages A′ and B′, where the guards of A′ and B′ are
defined over the opening event of X ′ and the xor-expression of the input block.
The guard of A′ refers to the xor expression, the one of B′ to its negation. The
milestone of X ′ is achieved, when either the milestone of A′ or B′ are achieved.

Parallel Blocks with the sub-blocks A and B are translated to an anonymous
stage P ′ with the sub stages A′ and B′. The guards of A′ and B′ are open as
soon as the guard of P ′ becomes active. The milestone of P ′ is achieved when
the milestones of A′ and B′ are both achieved.

A Loop-Block L with the sub-block A is translated to an anonymous stage
L′, containing the sub stages A′ and L′′. The stage L′′ is used to determine if
the loop needs to be executed or repeated, while A′ holds the loop body. L′′

is activated, when L′ becomes active or when the milestone of A′′ is achieved.
The milestone of L′ is reached if the milestone of L′′ is achieved and the loop
condition L.EXP is false. In order to comply with the flip-once [4] restriction
of GSM, the milestone of L′′ is defined over the task completion event of the
dummy task in L′′. The same approach is used, if an XOR-block contains empty
branches.

2.4 Weaknesses of Syntactic Translations

We will now discuss the properties of the translation approach based on the
partly simplified example process for order processing shown in Fig. 2. Part
a) of the example shows the activity-centric input process. Part b) shows the
translation of a) based on the proposed syntactic translation algorithm. Part
c) shows a GSM version of a) potentially created by a domain expert from
scratch. Our syntactic translation shown in b) has a number of disadvantages in
comparison to c):

Towards Ontology Guided Translation of Activity-Centric Processes to GSM 5

OrderProcessing

Shop Checkout ProcessOrder

Product
Selection
Completed

on
+Product
Selection
Completed

AddressDefined

Completed

on +Completed

ShipmentDefined
on +AddressDefined

SelectAdress

Select
ShippingA

Select
BillingA

SelectShipmentOptions

GenerateInvoice

PayInvoice

Create

Ship

AddProducts

Invoiced

on +Invoiced

Shippedon +Paid

productsSelected

created

on +created

...

Paid

Processed

on +Processed

Archived

Archive

CreateOrder

on E:CreateOrder.Completed

on + AddProducts‘.Milestone

on E:PayInvoice.Completed

on +SelectShippingA.Milestone
on +CreateOrder.Milestone

on +AddProducts.Milestone if L.EXP

SelectShippingA

SelectShipmentOptions GenerateInvoice Ship Archive

AddProducts

AddProducts‘

L‘‘

L‘

Pay

SelectBillingA

on E:AddProducts.Completed

on +L‘

on AddProducts‘.Milestone

on +L‘‘.Milestone if L.EXP

on E:SelectShippingA.Completed

on +L‘‘.Milestone if !L.EXP
on E:SelectBilling.Completed

CreateOrder SelectShippingA

SelectShipmentOptions GenerateInvoice Ship Archive

AddProducts

AddProducts‘

L L

Pay

SelectBillingA

a) Activity-Centric Process

b) Syntactic Translation

c) GSM Model of a) created by Domain Expert

Fig. 2. Input Process a), Syntactic Translation b), GSM Process of Domain Expert c)

1. Milestones and guards are defined on a solely technical level not relating to
any agreed real-world states of data objects. For example the milestone for
Pay in Fig. 2 b) is defined by the completion of the Pay task. In contrast,
the domain expert has modeled a stage PayInvoice with the milestone paid
in Fig. 2 c), where paid is a well-known state of order objects in the domain
and PayInvoice is a defined activity in the domain.

2. While existing translation approaches produce completely flat GSM models
[20, 21], [8], our algorithm faithfully preserves the structure of the input pro-
cess regarding LOOP, PAR and XOR-Blocks. However, this still leads to a
mostly flat output process in b). In contrast, the domain expert makes use
of nested stages in GSM , which allows to structure the process based on ab-
stract state transitions that are well-known in the domain. As a consequence,
c) is much better understandable than b). It encloses the activity stages in
the upper-level stages Shop, Checkout and ProcessOrder. In addition, the
stages are described by meaningful labels for stages, guards and milestones
referring to agreed terms of the domain.

3. Our translation approach generates exactly one artifact for each activity cen-
tric process. This contradicts with the aim of GSM to identify and model key
artifacts, where a process is possibly composed by the interplay of multiple
different artifacts (e.g. Order, Invoice, Payment).

6 Julius Köpke, Jianwen Su

Only the last critics (3) is solved by other translation approaches [15, 8, 21].
No existing approaches are capable to address critics one and two. All other
approaches generate flat GSM models and they either follow similar ideas for
encoding control-flow into stages and guards as our approach or they assume
to get the state of business objects as an input. Our aim is to automatically or
semi-automatically generate models like c) from models like a). From a more
generic perspective, we argue that the quality [18, 9] of solution c) is superior
to the quality of solution b). The reason is the different expressiveness of the
activity-centric model and the GSM model, leading to partial triangle mappings
between the real world, process a) and process c).

3 Towards Semantic Translations

As motivated in Sect. 2.4 a meaningful translation from an activity-centric pro-
cess to a GSM process requires domain knowledge, which may only exist in-
formally. We now present a framework that explicitly provides this knowledge
by using a reference ontology defining relevant business objects and their states
and a taxonomy of actions. The provided information is supposed to be generic
for a specific domain and can therefore be reused for all activity-centric process
models of that domain. The activity-centric processes are linked to the reference
ontology by semantic annotations [13].

3.1 Ontology of Business Objects and States

The reference ontology (RO) is encoded using the DL fragment of OWL [19]
and defines concepts for each relevant business entity such as order or invoice
in our example. It also describes what attributes (data-type properties) and
what relations to other entities (object properties) the different business entities
have. Besides the conceptualization of business entities, the ontology also defines
their valid states. States are described as defined OWL classes, which allow to
derive a state hierarchy automatically and to classify instance data. For example
the state paid of an order is defined as an order for which there exists an
invoice and for that invoice there exists a payment. This can be expressed as
following DL expression: “invoice u ∃ hasInvoice.(Invoice u ∃has.payment)”.
In order to allow reasoning over states and matching of states against pre- and
post-conditions of tasks, we propose to use such general definitions, rather than
defining the states based on status attributes (e.g. an order is paid, if some
attribute has the value paid). A fragment of an ontology for our order example
is shown in Fig. 3. For simplicity, we depict no hierarchy of states.

3.2 Semantic Annotations

The concepts in the ontology are linked to the activity-centric process by se-
mantic annotations [13, 3, 22]. We propose to use annotation paths [13] for

Towards Ontology Guided Translation of Activity-Centric Processes to GSM 7

BusinessEntity
 Order
 Invoice
 Payment
 BillingAddress
 ShippingAddress
 ...
States
 Order.State
 Empty
 ProductsSelected
 ProductSelectionCompleted
 BillingAddressSelected
 ShippingAddressSelected
 AddressDefined
 ShipmentDefined
 Completed
 Invoiced
 Paid
 Shipped
 Processed
 Archived
...

Reference Ontology Classes Example Class Definitions

Fig. 3. Fragment of the Example Ontology

annotating variable declarations of the activity centric process with the refer-
ence ontology. Following the annotation path method, we can for example an-
notate a process variable, used to store an ordernumber with the annotation
path /order/has/orderNumber, where order is a concept, has an object prop-
erty and orderNumber a concept in the reference ontology. If the variable stores
some complex XML-Type, then the XML-Type itself can be annotated using
the annotation path method [13]. The annotations of variable declarations also
implicitly maps read and write declarations of activities to the corresponding
ontology concepts. This already allows to (heuristically) map pre- and post-
conditions of activities to states in the ontology. For example, we can derive
that the post condition of the task pay refers to the paid concept (Order.State
u ∃ has.(Invoice u ∃ has.Payment)). This is possible even without explicit
pre- and post-conditions of paid, assuming that pay reads from a variable that
is annotated with an invoice concept and it writes to a previously non-initialized
variable that refers to a payment concept. Such inference is possible for most
states which are defined over the existence of a general relation between data
entities (as most states in the example are). However, more fine-grained state
changes require explicit pre- and post-conditions of tasks. These may either be
defined by directly annotating [11] the pre- and post-conditions of tasks with
states of the ontology or they may be defined on the syntactical level, still allow-
ing to infer the actual state in the ontology. For example the state Shipped is
defined by the value shipped for the data-type property hasShippingStatus in
the ontology. In this case read- or write accesses declarations of the activity ship
are insufficient to infer the post condition state shipped. However, if the activity
ship has the expression a=“shipped” as its post condition, where the variable a
is annotated with the annotation path /order/hasShippingStatus, we can infer

8 Julius Köpke, Jianwen Su

OrderProcessing
 Shop

 Create

 AddProducts

 Checkout

 SelectAddress

 SelectShippingAddress

 SelectBillingAdress

 SelectShipmentOptions

ProcessOrder

GenerateInvoice

PayInvoice

Ship

ArchiveOrder

PaymentProcessing
...

ProcessOrder
PreCondition: Completed
PostConditon: Processed

GenerateInvoice
PreCondition: Completed
PostConditon: Invoiced

PayInvoice
PreCondition: Completed Invoiced
PostConditon: Paid

Ship
PreCondition: Completed Paid
PostCondition: Shipped
...

Taxonomy of Actions Pre- and Post-Conditions

Fig. 4. An Example Taxonomy of Actions

that the post condition is the shipped concept. Such pre- and post-conditions
may be manually defined or heuristically derived from a log [22].

3.3 Taxonomy of Actions

The taxonomy of actions (ToA) describes abstract, well agreed actions that
result in state changes of a specific business entity. Such actions are organized in
a part of hierarchy. In this paper, we assume that such a taxonomy is provided
by the user. However, it may be created with the help of existing clustering
techniques such as [10] or by employing domain ontologies such as the MIT
process handbook [1].

Each action in ToA is annotated with pre- and post-conditions. Both are
DL expressions over states in the ontology. The semantics of the ToA is the
following: If some action b is defined as a child-action of some action a, then b
is considered as a potential part of a. Action b may be used to achieve the post
condition of a but it is not required to use b to achieve a in every case. Therefore,
the ToA can be considered as a general glossary of actions which can be reused
for different processes of the domain. An example ToA is shown in Fig. 4. In the
example the action ProcessOrder has the precondition Completed and the post
condition Processed. In the ontology Completed is defined as AddressDefined
u ShipmentDefined.

4 Ontology Guided Translations

After the inputs for an ontology assisted translation approach are defined in form
of an annotated activity-centric process G, a reference ontology RO and a tax-
onomy of actions ToA, we can define what a desirable output of the translation

Towards Ontology Guided Translation of Activity-Centric Processes to GSM 9

is. The translation should use as much domain knowledge as possible. There-
fore, obviously labels should be obtained from RO and ToA, for all matching
stages, milestones and guards. Regarding the introduction of the state hierar-
chy as much hierarchic information from ToA should be added to the GSM
process as possible. However, nesting should only be provided, when also group-
ings are performed. Therefore, nesting of a single stage into another stage is not
considered as a desirable behavior.

4.1 Semantics-Based Translation Approach

We sketch how the proposed framework of an annotated process G, RO and ToA
can guide the creation of a nested GSM process referring to agreed terms (guards,
stages, milestones) of the domain. Our approach operates in three phases.

Phase 1: Syntactic Translation: First a syntactic translation is created that
guarantees to preserve the behavior of the process in analogy to Sect. 2.3. We as-
sume a 1:1 relation between activity-centric processes and artifacts. However, 1:n
relations can be handled by first projecting the input process onto the different
artifacts based on RO.

Phase 2: Mapping activities to states of RO and actions of ToA: Ac-
tivities of the input process G are mapped with RO and ToA guided by the
semantic annotations / data access definitions. This mapping has two purposes:

1) Setting labels for guards (mapped states of preconditions in RO) and
milestones (mapped states of post condition in RO) of atomic GSM stages. E.g.
Fig. 2 b), the label of the milestone of Pay can be set to paid because the post
condition of the activity Pay matches the paid concept in RO (see Sect. 3.2 for
details on this matching).

2) Mapping of each activity a ∈ G based on pre- and post-conditions with
actions in ToA using RO. An activity a potentially matches an action t in ToA,
if t.pre v a.pre ∧ a.post v t.post.

Phase 3: Generation of Nested Stages: After the activities of G and
therefore, also the atomic stages of the target process are matched to RO and
ToA, we create a nesting of atomic stages guided by ToA. A set of activities
A = {s1, s2, ..., sn} can be nested into a parent stage p from ToA, if p is a
parent of every s ∈ A in ToA and if A matches the pre- and post-conditions
of p and there exists no set of activities A′, where A ⊂ A′ and A′ matches p.
Assuming that the ToA is generic and applicable for different processes, not all
sub-actions of an action in ToA are necessarily required to realize the parent
action p. Therefore, we propose the following matching criteria based on pre-
and post-conditions:

Matching Post-Conditions: We require that the steps of A produce at least
the post condition of p. Therefore, the combined post condition of A must be an
equivalence or subclass of the post condition of p.

Matching Pre-Conditions: The combined post condition of all preceding steps
of first(A) in G must be an equivalence or subclass of p.precondition, where

10 Julius Köpke, Jianwen Su

first(A) defines the set of all steps ⊆ A that are potentially executed first in G.
Therefore, all preconditions for opening p are achieved in G before opening p.

Calculating Combined Post-Conditions: We propose to follow a similar ap-
proach for computing the combined post condition of multiple activities as
[11, 22]. It depends on the control structures within the input process. We only
discuss the case that A is a sequence in G here. The combined post condition
of < a, b > is a.post u b.post unless a.post and b.post are disjoint. As [11, 22],
we assume that contradicting effects of a are overwritten by b and consequently
satisfiable solutions are generated by removing minimal sets of contradicting
elements from a.post.

Example: In Fig. 2 the stages GenerateInvoice, PayInvoice and Ship have
the same parent action ProcessOrder in ToA. ProcessOrder.pre = Completed,
ProcessOrder.post = Processed. The combined post condition of the previous
steps is ProductSelectionCompleted u Completed which is obviously a subclass
of Completed. The post-conditions of the child stages are Invoiced, Paid, Shipped,
and Invoiced u Paid u Shipped ≡ Processed (see def. of Processed in Fig. 3).
Therefore, these stages can be nested into the stage ProcessOrder.

The nesting starts at the level of atomic stages / actions and subsequently
also non atomic stages are nested based on the same principle. To ensure that as
much of the structure of the ToA is reflected in the output process, the matching
is done against the hierarchically nearest parents first and the procedure ends,
when no nesting of two or more elements into a parent stage is possible.

Finally, the sketched translation approach allows to automatically generate
the process shown in Fig. 2 c) based on the process shown in 2 a). The ontology
and ToA should provide general descriptions of the domain of interest and they
are not required to completely specify the input process. Therefore, the mapping
of the activity-centric process to the ontology and ToA may only be partial. By
starting with the syntactic translation we can still generate a complete and trace
equivalent translation that takes advantage of the available knowledge.

5 Related Work

The translation of activity-centric processes to artifact centric models has been
addressed in various works [15, 8, 21, 17, 20], where only [20, 21] and [8] gen-
erate GSM target processes. The approaches use different source models. While
[8] takes UML activity diagrams as input (including data objects and state in-
formation), [21] is based on [20] and is used in combination with process mining
and takes petri-nets as input. Our syntactic translation approach follows similar
ideas as [20, 21]. However, since we use block-structured processes as input, a pat-
tern based translation is directly possible for each block-type; references [21, 20]
need to deal with more complex issues having petri-nets as input. The works in
[15, 17] do not generate declarative GSM specifications but (synchronized) life
cycle models. Ref. [15] focuses on the identification of relevant business artifacts
based on the concept of domination of explicitly defined data objects. Although,

Towards Ontology Guided Translation of Activity-Centric Processes to GSM 11

the generation of life-cycle models is sketched, naming of states and state hier-
archies are not addressed in the work. The work in [17] discusses the roundtrip
transformation of activity-centric and artifact centric processes (non GSM). For
generating artifact-centric representations, the activity-centric process is aug-
mented with attribute definitions for defining pre- and post- conditions, which
are derived from the business rules of the (existing) artifact centric target pro-
cess. All approaches above generate syntactic translations of activity-centric to
artifact-centric processes. None of them utilizes domain knowledge and no nest-
ing of stages in the GSM target process is supported.

Abstractions of activity-centric processes have been studied in works such as
[24, 10, 23, 16]. In particular knowledge-based approaches for the abstraction of
activities such as [23] and [16] follow similar ideas, where a taxonomy of actions
is used as input. However, these actions do not relate to business objects of
the domain and they are defined by their label rather than by their pre- and
post-conditions and an ontology.

Regarding efforts for the semantic enrichment of business processes, refer-
ences [3, 22, 11] are closely related to our framework. In [11] business processes
are annotated with semantic effects and cumulative effects are computed auto-
matically, while [22] automatically derives post-conditions from log data. Ref.
[3] assists the user in creating and augmenting process models by exploiting a
domain ontology with a similar structure as our ontology framework but without
a taxonomy of actions. Recently, an approach to represent GSM on the onto-
logy level was presented in [5], leading to interesting future work such as the
automatic translation to such models.

6 Conclusions

Syntactic translations cannot relate to relevant concepts and knowledge of the
application domain and lead to poor results in comparison to translations pro-
vided by domain expert. In this paper we motivated and initiated the study
towards a semantic translation approach to overcome this limitation. We de-
veloped a framework that allows to include the missing domain knowledge in
the form of ontologies and semantic annotations. Based on this framework, we
sketched a method for semantic translations that utilizes well agreed terms of the
domain and that allows semantic nesting of stages in the target process. The re-
sulting GSM models facilitate interoperation based on artifacts [2] syntactically
and semantically. Current work includes the development of (semantic) quality
metrics for GSM to further optimize and evaluate translation approaches.

References

1. Organizing Business Knowledge: The MIT Process Handbook, volume 1. The MIT
Press, 1 edition, 2003.

12 Julius Köpke, Jianwen Su

2. D. Boaz, T. Heath, M. Gupta et Al. The ACSI hub: A data-centric environment
for service interoperation. In BPM’2014 Demos, Sept., 2014., page 11, 2014.

3. M. Born, F. Dörr, and I. Weber. User-friendly semantic annotation in business
process modeling. WISE 2007 Workshops, in LNCS 4832, pages 260–271. 2007.

4. E. Damaggio, R. Hull, and R. Vacuĺın. On the equivalence of incremental and
fixpoint semantics for business artifacts with guard–stage–milestone lifecycles. In-
formation Systems, 38(4):561–584, 2013.

5. R. De Masellis, D. Lembo, M. Montali, and D. Solomakhin. Semantic enrichment
of gsm-based artifact-centric models. Journal on Data Semantics, 4(1):3–27, 2015.

6. J. Eder, N. Kerschbaumer, J. Köpke et Al. View-based interorganizational work-
flows. In Proc. of CompSysTech 2011, Vienna, pages 1–10, 2011.

7. R. Eshuis, A. Norta, O. Kopp, and E. Pitkanen. Service outsourcing with process
views. IEEE T. Services Computing, 8(1):136–154, 2015.

8. R. Eshuis and P. Van Gorp. Synthesizing data-centric models from business process
models. Computing, pages 1–29, 2015.

9. A. Gemino and Y. Wand. A framework for empirical evaluation of conceptual
modeling techniques. Requirements Engineering, 9(4):248–260, 2004.

10. C. W. Günther and W. M.P. van der Aalst. Fuzzy mining adaptive process
simplification based on multi-perspective metrics. In BPM, pages 328–343. 2007.

11. K. Hinge, A. Ghose, G. Koliadis. Process SEER: A Tool for Semantic Effect
Annotation of Business Process Models In IEEE EDOC CONF 2009, pages 55–
63. 2009.

12. R. Hull, E. Damaggio, R. De Masellis, et Al. Business artifacts with guard-stage-
milestone lifecycles: managing artifact interactions with conditions and events. In
Proc. of DEBS 2011, pages 51–62. ACM, 2011.

13. J. Köpke and J. Eder. Semantic annotation of xml-schema for document transfor-
mations. In OTM 2010 Workshops, LNCS 6428, pages 219–228. 2010.

14. J. Köpke, J. Eder, and M. Künstner. Top-down design of collaborating processes.
In Proc. of IIWAS’2014, pages 336–345, 2014.

15. S. Kumaran, R. Liu, and F. Wu. On the duality of information-centric and activity-
centric models of business processes. In CAiSE’08, LNCS 5074, pages 32–47. 2008.

16. S. Mafazi, G. Grossmann, W. Mayer, M. Schrefl, and M. Stumptner. Consistent
abstraction of business processes based on constraints. JoDS, 4(1):59–78, 2015.

17. A. Meyer and M. Weske. Activity-centric and artifact-centric process model
roundtrip. In BPM Workshops, LNBIP 171, pages 167–181. 2014.

18. D. L. Moody. Theoretical and practical issues in evaluating the quality of concep-
tual models: current state and future directions. DATA KNOWL ENG, 55(3):243
– 276, 2005.

19. W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation, 27 October 2009.

20. V. Popova and M. Dumas. From petri nets to guard-stage-milestone models. In
BPM Workshops, LNBIP 132, pages 340–351. 2013.

21. V. Popova, D. Fahland, and M. Dumas. Artifact lifecycle discovery. International
Journal of Cooperative Information Systems, 24(01):1550001, 2015.

22. M. Santiputri, A.K. Ghose, H. Khanh Dam, and X. Wen Mining Process Task
Post-Conditions. In CAiSE’15, LNCS 9381, pages 514–527. 2015.

23. S. Smirnov, R. Dijkman, J. Mendling, and M. Weske. Meronymy-based aggregation
of activities in business process models. In ER 2010, LNCS 6412, pages 1–14. 2010.

24. S. Smirnov, H. A. Reijers, M. Weske et. Al. Business process model abstraction: a
definition, catalog, and survey. DISTRIB PARALLEL DAT, 30(1):63–99, 2012.

