
Top-Down Design of Collaborating Processes

Julius Köpke, Johann Eder, and Markus Künstner
Department of Informatics-Systems, Alpen-Adria Universität Klagenfurt

Klagenfurt, Austria
{julius.koepke, johann.eder, markus.kuenstner}@aau.at

ABSTRACT
Interorganizational business processes aim to integrate local
processes to support the seamless cooperation of organiza-
tions. Process view approaches are an adequate method bal-
ancing the communication requirements for enabling collab-
oration and the required privacy hiding internals of private
business processes. We focus on a top-down scenario for the
development of interorganizational processes, where first an
abstract global process is designed. Then each step of the
global process is assigned to one of the partners and a local
process is generated for each partner as a view on the global
process. Finally, the partners implement or adopt their pro-
cesses based on their views. We present an algorithm for the
fully automatic generation of views for any block-structured
input process with arbitrary partner assignments, provide a
method for merging the partner’s views to reconstruct the
global process and prove the correctness of the view gener-
ation method.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Office Au-
tomation—Workflow management

Keywords
Process View Generation, Process Partitioning, Interorgani-
zational Business Processes

1. INTRODUCTION
Technical support for the interorganizational cooperation

between different organizations requires the integration of
business processes. Web technologies [11, 28, 2] and SOA-
based protocols [1] are a good basis for the implementation
of such interorganizational processes which can be realized
in form of choreographies or orchestrations [23]. We specif-
ically address choreographies that allow a fully distributed
operation without the need for a central coordinator.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

iiWAS ’14, December 04 - 06 2014, Hanoi, Viet Nam
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3001-5/14/12 ...$15.00.
http://dx.doi.org/10.1145/2684200.2684282.

In this paper we focus on the top down part of forming co-
operating processes: transforming some given global process
to a set of collaborating distributed processes that realize the
interorganizational process which currently is still a tedious
and error-prone mostly manual task. We aim in automating
this step with a model-based view approach.

Process views [6, 24, 8, 2, 21, 26, 7] allow to represent the
externally observable behavior of business processes and to
balance the request for privacy and loose coupling between
processes with the communication demands for collabora-
tion. Most approaches for process views such as [8, 2, 21,
24, 26] follow a bottom up or - in analogy to the role of
views in federated databases [25] - global as view approach.
A view is derived from a private process definition, which
is actually instantiated and executed in a process engine at
runtime. The integration of such cooperating views consti-
tutes an interorganizational business process.

Views can also be used the other way round - to distribute
the steps of a global process definition. In this top-down
or local as view approach, first, a global interorganizational
process is defined as an abstract process. The activities con-
tained in this process definition are then distributed onto the
involved partners. Since the process definition is abstract,
it means that none of the steps are executed globally, since
there is no global or central component. Each step which
is defined in the global process is executed by one of the
participating processes.

The projection of the global process onto a particular par-
ticipant defines a view, i.e. a (local) workflow derived from
the abstract global process. Such a local process specifies
the obligations of a particular partner (execution of steps
defined in the global process) and the externally observable
behavior of the private processes. So a local process is also
a view on the private process which is actually executed by
a partner. The local process hides the parts of the private
process which are confidential or not relevant for the collab-
oration.

The p2p approach presented in [32, 29] is an example for
such a top-down modeling approach. As the construction
of views on a global process by projection requires the in-
troduction of communication steps and the distribution of
data, in particular data needed for control flow decisions it
is quite different from the construction of views on local pro-
cesses which only abstract from the process by deletion and
aggregation of steps [8, 2, 21, 24, 26].

In this paper, we present an automatic process partition-
ing algorithm that can be used in a top-down development
approach. Starting with a global process each step of the

process is assigned to one of the partners. In a next step
the global process with partner assignments is partitioned
fully automatically into views for each partner. Finally, the
partners can use the generated views to create new or adopt
existing processes according to their views.

We have already presented the general idea of the projec-
tion approach in a short paper [19]. Here we present the
following novel contributions:

• A complete partitioning algorithm (Section 4).

• An algorithm to merge a set of generated views to
reconstruct the global process (Section 5.1).

• A formal proof that the partitioning algorithm returns
views that correctly specify the distributed execution
of the input process (Section 5).

2. PROCESS MODEL
We specify the process definitions we consider in this ap-

proach with a meta-model. It is based on the capabilities of
block structured workflow nets (called full blocked workflows
by the WfmC [12] supporting sequence, PAR split / join,
XOR split/join, and LOOP split/join as control flow pat-
terns [31, 27]. We focus on block structured workflow-nets
as they prevent typical flaws of unstructured business pro-
cesses dealing with data [3] and are also in line with the WS-
BPEL[22] standard. The meta-model in Figure 1 shows the
essential components of this model in a simple way. The rep-
resentation of algorithms in the following sections is based
on this meta-model. Block structured workflow-nets can be
represented either as graphs or as hierarchies of (abstract)
activities. The meta-model captures both representations
- the transformation between these two representations is
straightforward. Therefore, we use the appropriate repre-
sentation in our different algorithms.
A process is defined by activity-declarations, variable decla-
rations and the control flow between activities expressed by
steps that refer to activities (activity-steps) or that define
the control flow in terms of sequences, XOR-, Parallel-, and
Loop- constructs. We also introduce abstract steps, which
represent any abstract activity as black boxes.

A step is associated with partners to define which partner
is responsible for the execution. For activity-steps, one part-
ner can be assigned. For the control steps PAR, XOR, and
LOOPS two potentially different partners (firstPartner)
and (lastPartner) can be assigned that are responsible for
the split (decision or parallel invocation) and the join (syn-
chronization) respectively. PAR, XOR are limited to two
sub blocks (branches) which does not restrict the expressive-
ness.

In this meta-model we abstract from data with the ex-
ception of decision variables. XOR− and LOOP− blocks
are typically associated with a condition which is a Boolean
expression based on variables. In interorganizational P2P
workflows, these expressions are not viable since they would
require that all variables in the condition expressions are
synchronized between all the partners effected by the flow
decision. Therefore, we restrict the control flow decisions to
single Boolean variables. This approach can also be inter-
preted as one partner executes an expression and commu-
nicates the result to the involved partners. This restriction
does not reduce the generality of our model since any in-
put process with a complex condition in an XOR split based

on several variables can always be transformed to a process
where the variables or the result of an evaluation of a subex-
pression are communicated to one partner who evaluates the
condition and writes the results of the Boolean expressions
to decision variables. The passing of data (other than de-
cision variables) between partners is out of scope for this
paper.

For XOR− and LOOP− blocks the firstPartner is re-
sponsible for the decision. Therefore, he must be able to
compute the value of the decision variable. Sequences, PAR,
and XOR have two sub blocks, Loops have one sub block.
For XOR−blocks the sub block stepA is executed if the de-
cision variable is true, otherwise stepB. In case of loops the
sub block stepA is executed, if the decision variable is true,
otherwise the loop is not entered or terminated. The sub
block stepA is the first block of a sequence, stepB is the
second one.

For all steps the method getPartners() returns a list of
all partners that are (recursively) involved in the step. Com-
munication steps (sendSteps and receiveSteps) realize the
control flow and pass decision variables between partners
asynchronously.

3. PROJECTING A GLOBAL PROCESS TO
VIEWS FOR EACH PARTNER

As in [29, 32] we propose the following procedure for defin-
ing interorganizational workflows: (1) define a global (ab-
stract) workflow, (2) assign each step in the workflow to a
partner (3) partition the process. (4) Create private pro-
cesses based on the generated views. The global process is
executed by the distributed execution of the private pro-
cesses.

While the work in [29, 32, 30] concentrates on the question
whether a private process correctly implements a (public)
view (is in accordance with) our aim is to provide a parti-
tioning procedure that does not impose any restrictions on
the global process and on the partner assignments. Addi-
tional design rationales are: (1) the resulting views should
be as simple as possible, and (b) unnecessary message ex-
change should be avoided. E.g. a partner should only know
about control structures and receive only messages that are
absolutely required. In the following, we discuss our parti-
tioning method by examples for each control structure. Our
approach operates in two phases: First, the global process
is augmented with communication steps that realize the in-
terorganizational control flow and variable passing. In a next
step, views for the partners are created by projection.

Sequence Blocks:.
In Figure 2 an example for the partitioning of a sequence

is shown. The global process contains the steps DA, FB

and GC in a sequence. D is defined to be executed by A,
B executes F and C executes G. In order to support a
distributed execution the global process is first augmented
with pairs of send- and receive- steps whenever a step is
followed by another step, which is assigned to a different
partner. In particular in the example send- and receive-
steps are inserted between DA and FB and between FB and
GC in the augmented global process. The corresponding
views for each partner are shown on the right. They are
created by simply projecting only steps that are assigned to
the specific target partner.

 name {unique}

Activity

+getPartners() : Partner []

+getFirstPartner() : Partner

+getLastPartner() : Partner

Step

 label {unique}

 interMediatePartners : Partner[]

 type : {ABSTRACT}

AbstractStep

 name {unique}

Partner

 label {unique}

Variable

 label {unique}

 type : {ACTIVITYSTEP}

ActivityStep

+type : {XOR,PAR,LOOP,SEQ}

ControStep

 to : Partner

 type : {SEND-STEP}

sendStep

 from : Partner

 type : {RECEIVE-STEP}

receiveStep

 messageType

CommunicationStep

+label

Process

0..1

0..1

0..1 0..*

1..*

1..*

0..*

0..*

1

0..1

0..1
0..*

0..1

0..1

*

*

0..*

0..*

sends/receives

calls

lastPartner

contains

containscontains

stepBstepA

decisionVariable

firstPartner

{ firstPartner = lastPartner }

Figure 1: Workflow Meta-Model

FB

FB

DA

DADA

FB

GC

SA,B

SA,B

SB,C

RB,A

RC,B

SB,C

GC

GCGlobal Process

Augmented Global Process

View for Partner A

View for Partner B

View for Partner C

RB,A

RC,B

Figure 2: Partitioning of Sequences

FB

FB

GC

FBSA,B

SA,B RD,B

RD,C

SB,DRB,A RD,B SB,D

SC,DRC,A RD,CSA,C

SA,C

SC,D

GC

GC

PS

PS

PS PS
A

A

A D

PJ

PJ

PJ PJ
D

D

A D

Global Process

Augmented Global Process

View for Partner A View for Partner D

View for Partner B

View for Partner C

RB,A

RC,A

Figure 3: Partitioning of Parallel Blocks

Parallel Blocks:.
An example for the augmentation and partitioning of a

parallel block is shown in Figure 3. Partner A is responsible
for the parallel split. The partners B and C execute their
tasks F and G in parallel. Partner D is responsible for the
synchronization. The process is augmented by send- and
receive- steps between partner A and B, and A and C and
finally between B and D and C and D. While the parallel
split and join steps remain in the views of partner A and D,
partners B and C do not need to know about the parallel
execution and get only sequences in their views.

XOR-Blocks:.
XOR-blocks are based on some decision variable. The

owner of the XOR-split takes the decision. All partners
who need to execute the XOR split themselves are informed
about the decision by a message transporting the decision
variable. In the example in Figure 4 partner A is responsible
for the XOR split and distributes the decision variable to B
and D.

Partner C does not need to know about the decision be-
cause he does not need to have an XOR-block in his view.
After the XOR-split, the control flow must be forwarded.
This is realized by a send- and receive- steps between A and
C. There is no such communication required between A and
B because B can proceed as soon as the value of the decision
variable was received.

The XOR join is executed by partner D. Therefore, like
for parallel join nodes the last partner in each branch needs
to pass the control flow to the join partner. However, the
join partner requires the decision variable from partner A to
know whether the incoming message will arrive from B or
from C.
In the example partner C has a sequence of steps in his view
rather than an XOR-Block. This simplification is possible
because C takes exclusively part in one branch of the XOR-
block (and in no other step before, after, or parallel to this
XOR-block). Therefore, C does not need to know about the
XOR-block at all. Such a simplification is not possible for
partner B because B must know whether step F needs to
be executed before step H or not.

LOOP-Blocks:.
Loops are partitioned into views in analogy to XOR-

blocks. The first partner in the loop (assigned to the loop-
split node) is responsible for the decision. Therefore, the
first partner distributes the decision variable to the partners
that take part in the loop. An example is shown in Figure
5. As for XOR−blocks, the first partner in the loop body
(B) does not need to be explicitly called by A because he re-
ceives the decision variable from A and can directly execute
the loop split and the activity step. After each iteration of
the loop, the current version of the decision variable is dis-
tributed to all relevant partners by a sequence of send- and
receive- steps that are added directly before the loop-join.

4. AUTOMATIC GENERATION OF VIEWS
After we have introduced the general idea of the partition-

ing process we will now present an algorithm that realizes
the discussed methods fully automatically. As in the exam-
ples, the approach is based on two phases: Augmentation
and projection.

4.1 Augmentation
The automatic augmentation procedure is shown in Algo-

rithm 1. It directly operates on the hierarchic process rep-
resentation as discussed in Section 2. It is called with the
root block of a process (inBlock) and recursively traverses
the process tree. Depending on the type of the input block
(inBlock) the different augmentation patterns introduced in
Section 3 are applied.

In particular, in case of sequences send- and receive- steps
are inserted between two subsequent elements < e1, e2 >,
if e1.lastPartner 6= e2.firstPartner and if the steps are
not communication steps (see Figure 2). In case of XOR−
and LOOP−blocks the required decision variables are dis-
tributed to the dependent partners and the split and join
steps are augmented with necessary communication steps
(see Figure 4 and Figure 5). Either communication steps
for decision variables or communication steps for the con-
trol flow are inserted. Parallel blocks are handled by adding
communication steps for split and join steps as shown in
Figure 3. Finally, loop blocks are addressed by adding com-
munication steps for decision variables and for the control
flow as shown in Figure 5.

4.2 Projection
After the global process is augmented with send- and

receive- steps views for each partner are created by sim-
ply projecting the steps to the specific partners. In order to
project the augmented global process to some partner p, the
following steps are performed: (1) Blocks that do not contain
any direct or indirect partner assignment to p are removed.
(2) Control steps (XOR, LOOP, PAR), where p takes part in
are rewritten to p. Thus, the first and the last partner (split
and join node in graph representation) are assigned to p. (3)
A special case are abstract steps that may contain multiple
partners. For such blocks, the block itself is projected to p
by removing all partner assignments (firstPartner, lastPart-
ner, interMediatePartners) that are not equivalent to p. All
these operations can easily be realized in a simple traversal
of the view.

Due to space limitations we do not provide the corre-
sponding algorithm here and refer to the technical report
[18] for all details.

The corresponding procedure projectProcess() is shown in
algorithm 2. It is called with an augmented global workflow
inBlock and a partner p. The output of the procedure is the
view for partner p.

4.3 Cleanup
After the views are created for each partner, some cleanup

steps are executed using an additional traversal of the views.
The following cleaning actions are performed for each view:

(1) If a PAR − Block has one empty branch (StepA or
StepB is null) in the view, then the PAR−Block is replaced
by a sequence.

(2) If an XOR−Block has one empty branch (StepA or
StepB is null) and the first partner of the corresponding
XOR-Block in the global process is not assigned to the part-
ner of the view (the partner of the view is not responsible for
the split), and the partner of the view is not assigned to any
other block that is executed before or after the XOR-block,
then the XOR− block is replaced by a sequence.

(3) Sequences that are containing only one element are
eliminated. The details of the cleanup algorithm are dis-

FB

HB

HB

HB

FB

GCFB

SA,B

SD,B

SA,D

SA,C

RC,ASB,D RD,B

SB,D

RD,C

RD,B

SC,A

RC,A RD,CSA,C SC,D

SA,B SA,D

RD,A

RB,ARB,A

RB,D

RB,DRD,A

GC

GC

XS

XS

XS

XS

XS

A

A

A

D

B

XJ

XJ

XJ

XJ

XJ

D

D

A

D

B

Global Process

Augmented Global Process

View for Partner A

View for Partner B

View for Partner C

View for Partner D

Figure 4: Partitioning of XOR-Blocks

Global Process

Augmented Global Process

View for Partner A

View for Partner B

View for Partner C

LS

LS

LS

LS

LS
A

A

B

C

A

BB C

C

C

c

LJA

E

E

E
A

A

A

SA,B

SA,B

SA,B

SB,C

SB,C

SC,A

SC,A RA,CRC,B

RC,B

RA,C

SA,C

SA,C

SA,C

RB,A

RB,A

RC,A

RB,A
RB,A

RC,A

SA,B SA,C

RC,A

RC,A

B

B

C

b

B

C

LJ

LJ

LJ

LJ

A

B

A

C

Figure 5: Partitioning of Loop-Blocks

cussed in [18].

5. EVALUATION
A partitioning is correct, if the global process and the

set of communicating local processes are behaviorally equiv-
alent, i.e. if the distributed execution of the ensemble of
communicating process generated by the partitioning algo-
rithm admits exactly the same traces of activity invocations
as a centralized execution of the global process would. A
sufficient condition for this behavioral equivalence is when
a correct merging of the set of derived processes is identical

to the global process. We will present a method for merging
views in Sect. 5.1 and provide the correctness proof of our
partitioning approach in Sect. 5.2.

5.1 Simple Merge of Views
A set of views V = vp1 ... vpn of n partners that adhere

to some global process G can be merged to reconstruct the
global process. We can assume that the generated views
are structurally equivalent in the sense that no equivalence
transformations [4, 5] of the views need to be applied in
order to merge them. We will discuss a simple process
merge method that exploits this property and operates on

Algorithm 1 Augmentation of a Global Process

Procedure augmentProcess
Input: RootBlockOfGlobalProcess inBlock
if (inBlock.type = ActivityStep or inBlock.type =
Abstract) then

3: return // Base Case
end if
if (inBlock.type = ’SEQ’ or inBlock.type = ’XOR’ or
inBlock.type = ’PAR’) then

6: augmentProcess(inBlock.StepA);
7: augmentProcess(inBlock.StepB);
end if
// Add send-/receive pairs for control flow
// if succeeding partners of non Communication Steps
// are different.
if (inBlock.type = ’SEQ’) then

11: if ((inBlock.StepA.lastPartner !=
inBlock.StepB.firstPartner) and
!(stepOf(inBlock.StepA.lastPartner).type =
CommunicationStep and
stepOf(inBlock.StepB.firstPartner).type =
CommunicationStep)) then

12: addSendReceive(inBlock)
13: end if
end if
if (inBlock.type = ’XOR’) then

16: for all (partner ∈ inBlock.getPartners()) do
17: // Add communication steps for control flow if

dec. vars. are not sent.
18: if partnerOnlyInOneBranch(partner,inBlock)

then
19: augmentSplit(inBlock)
20: end if
21: end for
22: augmentJoin(inBlock)
23: // Distribute dec. vars. to relevant partners.
24: for all (partner ∈ inBlock.getPartners()) do
25: if (partner 6= inBlock.firstPartner and

(partnerInBothBranches(partner,inBlock) or
partner = inBlock.lastPartner or
(partnerOnlyInOneBranch(partner,inBlock) and
!partnerOnlyInThisBlock(partner,inBlock))))
then

26: addConditionMessages(inBlock,partner)
27: end if
28: end for
end if
if (inBlock.type = ’PAR’) then

31: augmentSplit(inBlock); augmentJoin(inBlock);
end if
if (inBlock.type = ’LOOP’) then

34: for all (partner ∈ {inBlock.getPartners()}) do
35: if (partner 6= inBlock.firstPartner) then
36: addConditionMessages(inBlock,partner)

// Distribute decision variables
37: end if
38: end for
39: augmentSplit(inBlock);

augmentProcess(inBlock.StepA);
end if

Algorithm 2 Create a View for a Specific Partner

Procedure projectProcess
Input: RootBlockOfAugmentedGlobalProcess inBlock,
Partner p
if ({p} ∩ inBlock.getPartners() == {}) then

3: hide(inStep)
4: return
end if
if (inBlock.type = ’Simple’}) then

7: return
end if
if (inBlock.type = ’Abstract’}) then

10: projectAbstractStep(inBlock,p)
11: return
end if
if (inBlock.type = ’SEQ’) then

14: projectProcess(elem.StepA,p)
15: projectProcess(elem.StepB,p)
end if
if (inBlock.type ∈ {XOR,AND,LOOP}) then

18: projectBlock(inBlock,p)
19: projectProcess(inBlock.stepA,p)
20: if (inBlock.type 6= LOOP) then
21: projectProcess(inBlock.stepB,p)
22: end if
end if

the graph representation of the views here. Each view v ∈
V can be represented as a graph (V,E) (in particular a di-
rected, attributed, acyclic graph). Each node in v has a type
∈ {XOR-Split, XOR-Join, PAR-Split, PAR-Join, LOOP-
Split, LOOP-Join, ACTIVITY-STEP, Send-Step, Receive-
Step, AbstractStep}. The nodes of each view are connected
by the set of directed edges v.E. Outgoing edges of XOR-
Split and LOOP-Split nodes are annotated with true and
false. All further properties of the graph representation are
equivalent to those discussed in the meta-model of Section
2. The merge algorithm makes the following assumptions
on the input views: For all send- and receive- steps the
triple (sendNode.to, receiveNode.from, messageType) is al-
ways unique and activity- or abstract steps with the same
label in different views define the same step in the global
process.

5.1.1 Observations of the properties of a single view
We will now discuss some properties of a single view Vpx

of some partner px with regard to the merged global process
Vunion.

1. Any edge (n1, n2) ∈ Vpx.E where n1.type = send ∧
n2.type 6= send ∧ (n1.sendsV ar 6= n2.decisionV ariable
cannot be part of Vunion.

2. Any edge (n1, n2) ∈ Vpx.E is impossible in Vunion if
n2.type = abstract ∧ n2.first 6= px or n1.type =
abstract ∧ n1.last 6= px

A send-step is connected to some receive step of another
process during merging. If it is additionally connected to
some local step this results in unwanted token multiplica-
tion in the merged global process. However, this behavior
does not happen in the distributed execution of the private

process because the processes are synchronized with a suc-
ceeding receive step. Token multiplication / parallelism is
only allowed for the distribution of decision variables (1).
Incoming control flow to abstract steps can only exist to the
first partner; outgoing control flow can only exist for the last
partner of an abstract step. All other incoming and outgo-
ing control flows of abstract steps are only valid in a specific
view (2).
Therefore, we first remove all edges that match properties
(1) or (2) before we proceed with our merge method.

5.1.2 Merging of prepared views
After the views are prepared based on the observations

of Section 5.1.1 they can be merged to obtain the global
process. Due to space limitations, we cannot provide the
merging algorithm here and refer the reader to [18] for all
details. View merging basically operates in three stages:
First a merged graph that contains all the edges and all the
nodes of all input views is created. In a next step match-
ing send- (s) and receive nodes (r) where (s.to = r.from
and s.messageType = r.messageType) are merged. In par-
ticular, whenever a match is found send- and- receive nodes
are eliminated and the previous node of the send- and the
succeeding node of the receive-node are directly connected.
Any additional edges of the send-node are moved from the
send- node to the previous node. We preserve the annota-
tions of edges (relevant for XOR and LOOP− blocks) by
adding the annotations of (s.prev, s) and of (r, r.next) to
(s.prev, r.next).
In a next step all abstract nodes with the same label are
merged and all XOR-Split, Loop-Split and Loop-Join nodes
are merged, when they have the same previous node. Fi-
nally, unconnected edges and nodes are removed from the
graph.

5.1.3 Correctness of merged views
The merging method as discussed in the previous section

may produce a global process that is not behaviorally equiv-
alent to the distributed execution of the input views. By
splitting the input views into pieces during preparation and
reconnecting them by matching send- and receive- steps the
order of steps in the views is not guaranteed to be preserved
in the merged result. Additionally, the condition for the
predecessor relation between any two steps may be different
in the the merged result and the views. E.g. In some view
a step a may be followed by a step b in all cases but in the
merged result b is only executed under a specific condition.

Definition 1. A merge-result is correct for the set of
input views V , iff:

∀ v ∈ V : ∀ (n1,n2) ∈ prec(v) ∃ (g1,g2) ∈ prec(Vunion)
such that n1 = g1 ∧ n2 = g2 ∧ condPrec(n1, n2, v) =
condPrec(g1, g2, Vunion)

prec(v) defines the predecessor relation between all activity-
or abstract steps in the view/process v. condPrec(n1, n2, v)
returns the set of conditions under which n2 is a predecessor
of n1 in the view/process wf .

The algorithms for the automatic evaluation of the cor-
rectness property of a merge according to this definition is
provided in [18].

5.2 Proving the Correctness of the Partition-
ing Method

Definition 2. Correctness of a Partitioning:

A partitioning P (p) = {vp1, ..., vpn} of a process p for n
partners is correct, iff: The representation of p as a graph is
structurally equivalent to the correct merge of the views in
graph representation:
toGraph(p) ≡ merge({toGraph(vp1), ..., toGraph(vpn)}) ∧
correct(merge({toGraph(vp1), ..., toGraph(vpn)}), P (p)).

This narrow definition of equivalence is applicable because
we know that our algorithms will not require applying any
equivalence transformations [4] such as changing the struc-
ture of the hierarchy before the graphs are merged or com-
pared.

Theorem 1 (Correct Partitioning). Any global process is
correctly partitioned into views for k partners using the pre-
sented partitioning approach.

Proof 1. We prove the theorem by induction over the nest-
ing depth of the global process. A process W of nesting
depth 0 can only be one activity-step and the partitioning
is equal to the process and is trivially correct.

We assume that processes of nesting levels up to n are
partitioned correctly and show that under this assumption
the processes of nesting level n+1 are correctly partitioned.
A process of nesting level n + 1 can be a XOR-, LOOP-,
SEQUENCE-, PAR- Block with a sub block of nesting level
n.

We use abstract steps as placeholders for the sub blocks.
This is possible because they have exactly the same proper-
ties as any other block: They are defined by a first partner,
a last partners and an optional set of intermediate partners
(see Figure 1).

We prove by exhaustive analysis of cases, i.e. for all four
types of control steps and all possible assignment configura-
tions of partners to steps that the partitioning is correct in
the following way: We generate a global process, partition
the process substituting the abstract step with its projec-
tions (which are correct according to the induction assump-
tion) and merge the generated views and compare the result
with the global process.

In Figure 6 the generic cases for nesting level n+1 for se-
quences, parallel and loop blocks are shown. Each generic
case is annotated with a set of slots #1, ..., #n that are
placeholders for partners. For example, a loop has 5 slots
that can be filled with up to 5 different partners. Slots
#1,#2,#4,#5 are single valued slots (they must be filled
with exactly one partner), while the slot #{3} can be filled
with sets of partners including the empty set. The possi-
ble partner assignments range from all slots (1, 1, {1}, 1, 1)
are filled with the same partner to each slot has a differ-
ent partner (1, 2, {3}, 4, 5). We include multi-valued slots
with the empty set and any set of partner of size 1. We did
not test sets bigger than one because they do not constitute
an additional assignment configuration for the partitioning
algorithm.

While sequences, PAR− and LOOP− blocks are not con-
text dependent (the partitioning only depends on the current
block), the augmentation and projection of XOR−blocks is
context-dependent. An XOR-block is transformed into a se-
quence in the view of a partner p and the corresponding de-

Example Partner Assignments LOOP

SEQ

PAR

LOOP

Generic Block
A

Generic Block
A

Generic Block
AGeneric Block

B

Generic Block
B

PS

LS

PJ

LJ

#1

#1

#8

#5

#1

#2

#2#4

#5

#{2}

#{3}

#{3}#{5}

#{6}

#3

#4

#4#6

#7

1 1 { } 1 1
1 1 { } 1 2
1 1 { } 2 1
1 1 { } 2 2
...

...
1 2 {3} 4 3
1 2 {3} 4 4
1 2 {3} 4 5

Figure 6: Generic Cases for Sequence-, Parallel- and Loop- blocks

Generic Block
B

Generic Block
A

Generic Block
C

XS XJ

#3 #10

#4

#1

#7

#{5}

#{2}

#{8}

#6

#1

#9

Figure 7: Generic Cases for XOR−Blocks

cision variable is not sent to p, if p does not take part in the
other branch of the XOR-block and if p does not take part
in any other block that is not a parent of the XOR block.
See line 24 in Alg. 1 and item 2 in section 4.3. While the
condition that a partner does not occur in both branches of
an XOR (partnerInBothBranches(partner,inBlock)) is local
to the current block, the condition that a partner only takes
part in this block (partnerOnlyInThisBlock(partner,inBlock))
is dependent on the context. The two possible non-local con-
text instantiations are that the partner either takes part in
another block or that the partner does not take part in an-
other block. Both non-local context instantiations must be
covered by the analysis of XOR−blocks. According to the
augmentation and projection algorithm, it makes no differ-
ence in what block type outside of the current XOR-block
the partner in question p takes part. Therefore, it is suf-
ficient to analyze all possible cases, when an XOR-block is
nested into a sequence of two steps to simulate all possi-
ble context instantiations. The case of an XOR nested in
a sequence including its 10 slots for partner assignments is
shown in Figure 7.

We have implemented all required algorithms and could show
that our partitioning algorithm correctly partitions all cases.

6. RELATED WORK
Workflow View mechanisms typically allow to hide and

aggregate elements of a process in order to provide a good
balance between the information that needs to be shared
for the cooperation and privacy concerns of the partners.
Most process view approaches such as [8, 2, 21, 24, 26] al-
low to define views on private processes which is especially
useful for outsourcing or producer/consumer scenarios. In
contrast to the aforementioned view approaches we have pre-
sented a top-down approach that allows to derive views from
a global process. This scenario is also addressed by the p2p
approach to interorganizational workflows [32] and more re-
cently with multi party contracts [30]. Both approaches are
based on extensions of petri-nets and therefore abstract from
the data perspective using indeterminism. This is especially
problematic, when decisions need to be synchronized be-

tween different partners. In contrast to our approach the
partitioning procedure presented in [32] does not guarantee
that the resulting partitions are valid for any assignments
of partners. Instead, they define that a partitioning is only
correct if all resulting partitions are valid interorganizational
workflow nets. This restriction was partly addressed in [30],
where open workflow nets are used for modeling. However, a
valid partitioning is still restricted: Interface places between
partners must always be bilateral. This results in problems
for possible partitions. For example, the outgoing flow of
an XOR (a place with two outgoing transitions) cannot re-
late to different partners. The same holds for XOR joins.
Therefore, it is up to the designer to create a global process
that can be partitioned correctly based on the requirements.
We do not need to impose such restrictions and we operate
on deterministic models. We achieve this by an augmen-
tation phase that automatically injects the required com-
munication steps for decisions and control flow between the
partners. This allows us to guarantee that any full-blocked
process can be partitioned automatically based on any arbi-
trary partner assignment.
Another field of related research is the top-down interaction
modeling of choreographies including data (message con-
tents) which is addressed in approaches such as [17, 20].
However, they have a different scope: In interaction mod-
eling, the entities of concern for projection are limited to
messages while ignoring tasks. In our case not message-
exchanges but processes are partitioned and the message-
exchanges are generated automatically.
An alternative top-down process partitioning method for
global processes was presented in [13]. It translates XOR
and LOOP constructs in the global process to deferred choice
/ deferred loop constructs in the views. This is an ele-
gant solution that minimizes message exchanges in some
cases. However, it does not comply with non-local con-
straints, which can result in wrong projections. Another
problem is that the approach requires broadcasting messages
for the termination of loops. Both problems are solved by
our approach.
Also directly related to our approach are partitioning meth-
ods for executable BPEL processes, which are based on
the assignment of tasks to partners. Partitioning BPEL
processes has specific requirements such as the distributed
elimination of death paths. Approaches for their partition-
ing are discussed in the work of Khalaf et al [15, 14, 16].
The authors of [10, 9] claim that the work of Khalaf et al.
does not provide a complete solution for the partitioning of
BPEL processes and only addresses certain specific aspects
of BPEL. Instead, they propose to define the partitioning on
a higher level of abstraction using general block-structured
processes in their own approach. However, in [10] loops
are not addressed and their extension in [9] addresses loops
but lacks a formal description and implementation. In con-
trast, our method provides a completely automatic parti-
tioning method that also addresses loops and we could prove
that our algorithms produce correct views for any block-
structured input process with any assignment of partners.
None of the other works stated above [15, 14, 16, 10, 9] have
proven the correctness of their solutions.

7. CONCLUSIONS
We presented a novel process partitioning method for the

top down development of distributed interorganizational pro-
cesses. The general idea is that the cooperating partners
first agree on a global business process. In a next step, each
step of the global process is assigned to one of the partners.
Finally, our partitioning algorithm is used to automatically
derive local process definitions as views on the global pro-
cess for each partner. The views contain the (abstract) tasks
that should be realized by the partners and the required
control structures and communication steps that specify the
distributed execution (choreography) of the global process.
The partners then have to map their local process to their
private processes which are then actually executed. In con-
trast to existing approaches, we can guarantee that every
full-blocked process is correctly partitioned for any arbitrary
partner assignment and we generate deterministic processes
by explicitly addressing the distribution of decision vari-
ables. The partitioning algorithm is an essential module
in designing P2P processes. A view derived for a particular
partner can be used as skeleton for the private process. Such
a top-down view can also be used for checking the compat-
ibility of a private process or of the public interface of the
process with the interorganizational process.

8. REFERENCES
[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.

Web Services: Concepts, Architectures and
Applications. Springer, Berlin, Germany, October
2003.

[2] I. Chebbi, S. Dustdar, and S. Tata. The view-based
approach to dynamic inter-organizational workflow
cooperation. Data Knowl. Eng., 56(2):139–173, Feb.
2006.

[3] C. Combi and M. Gambini. Flaws in the flow: The
weakness of unstructured business process modeling
languages dealing with data. In On the Move to
Meaningful Internet Systems: OTM 2009, volume
5870 of LNCS, pages 42–59. Springer, 2009.

[4] J. Eder and W. Gruber. A meta model for structured
workflows supporting workflow transformations. In
Proceedings of ADBIS 02, pages 326–339, London,
UK, UK, 2002. Springer.

[5] J. Eder, W. Gruber, and H. Pichler. Transforming
workflow graphs. Interoperability of Enterprise
Software and Applications, pages 203–214, 2006.

[6] J. Eder, N. Kerschbaumer, J. Köpke, H. Pichler, and
A. Tahamtan. View-based interorganizational
workflows. In Proc. 12th Int. Conf. Computer Syst.
and Tech. (CompSysTech’11), pages 1–10. ACM, 2011.

[7] J. Eder and A. Tahamtan. Temporal consistency of
view based interorganizational workflows. In Proc.
Information Systems and e-Business Technologies,
UNISCON 2008,, volume 5 of Lecture Notes in
Business Information Processing, pages 96–107.
Springer, 2008.

[8] R. Eshuis and P. Grefen. Constructing customized
process views. Data Knowl. Eng., 64(2):419–438, Feb.
2008.

[9] W. Fdhila and C. Godart. Toward synchronization
between decentralized orchestrations of composite web
services. In Collaborative Computing: Networking,

Applications and Worksharing, 2009. CollaborateCom
2009. 5th International Conference on, pages 1–10,
Nov 2009.

[10] W. Fdhila, U. Yildiz, and C. Godart. A flexible
approach for automatic process decentralization using
dependency tables. In Web Services, 2009. ICWS
2009. IEEE International Conference on, pages
847–855, July 2009.

[11] H. Groiss and J. Eder. Workflow systems for
inter-organizational business processes. ACM
SIGGroup Bulletin, 18:23–26, 1997.

[12] D. Hollingsworth. The workflow reference model. 1995.

[13] N. Kerschbaumer. View-Based Interorganizational
Workflows. Phd-thesis, Alpen Adria Universitaet
Klagenfurt, Universitaetsstrasse 65-67, 9020
Klagenfurt, November 2011.

[14] R. Khalaf, O. Kopp, and F. Leymann. Maintaining
data dependencies across bpel process fragments. In
Service-Oriented Computing - ICSOC 2007, volume
4749 of LNCS, pages 207–219. 2007.

[15] R. Khalaf and F. Leymann. E role-based
decomposition of business processes using bpel. In
Proceedings of ICWS ’06, pages 770–780, Sept 2006.

[16] R. Khalaf and F. Leymann. Coordination for
fragmented loops and scopes in a distributed business
process. Information Systems, 37(6):593 – 610, 2012.

[17] D. Knuplesch, R. Pryss, and M. Reichert. Data-aware
interaction in distributed and collaborative workflows:
Modeling, semantics, correctness. In CollaborateCom,
pages 223–232. IEEE, 2012.

[18] J. Köpke, J. Eder, and M. Künstner. Implementing
projections of abstract interorganizational business
processes. Technical report, Universität Klagenfurt -
ISYS, 2014. http://isys.uni-klu.ac.at/PDF/2014-Impl-
Process-Partitioning.pdf.

[19] J. Köpke, J. Eder, and M. Künstner. Projections of
abstract interorganizational business processes. In
H. Decker, L. Lhotska, S. Link, M. Spies, and R. R.
Wagner, editors, Database and Expert Systems
Applications, volume 8645 of Lecture Notes in
Computer Science, pages 472–479. Springer
International Publishing, 2014.

[20] H. Nguyen, P. Poizat, and F. Zaidi. Automatic
skeleton generation for data-aware service
choreographies. In Software Reliability Engineering
(ISSRE), 2013 IEEE 24th International Symposium
on, pages 320–329, Nov 2013.

[21] A. Norta and R. Eshuis. Specification and verification
of harmonized business-process collaborations.
Information Systems Frontiers, 12(4):457–479, Sept.
2010.

[22] OASIS. OASIS Web Services Business Process
Execution Language (WSBPEL) TC. Technical
report, ”OASIS”, Apr. 2007.

[23] C. Peltz. Web services orchestration and choreography.
IEEE Computer, 36(10):46–52, October 2003.

[24] M. Reichert, J. Kolb, R. Bobrik, and T. Bauer.
Enabling personalized visualization of large business
processes through parameterizable views. In Proc.
27th Annu. ACM Symp. Applied Comput. (SAC’06),
pages 1653–1660. ACM, 2012.

[25] A. P. Sheth and J. A. Larson. Federated database
systems for managing distributed, heterogeneous, and
autonomous databases. ACM Comput. Surv.,
22(3):183–236, 1990.

[26] S. Smirnov, H. Reijers, M. Weske, and T. Nugteren.
Business process model abstraction: a definition,
catalog, and survey. DISTRIB PARALLEL DAT,
30(1):63–99, 2012.

[27] W. M. P. van der Aalst. Verification of workflow nets.
In ICATPN, volume 1248 of LNCS, pages 407–426.
Springer, 1997.

[28] W. M. P. van der Aalst. Process-oriented architectures
for electronic commerce and interorganizational
workflow. Information Systems, 24(8):115–126, 1999.

[29] W. M. P. van der Aalst. Inheritance of
interorganizational workflows: How to agree to
disagree without loosing control? IT and
Management, 4(4):345–389, 2003.

[30] W. M. P. van der Aalst, N. Lohmann, P. Massuthe,
C. Stahl, and K. Wolf. Multiparty contracts: Agreeing
and implementing interorganizational processes.
Comput. J., 53(1):90–106, 2010.

[31] W. M. P. van der Aalst, A. H. M. Ter Hofstede,
B. Kiepuszewski, and A. P. Barros. Workflow patterns.
Distrib. Parallel Databases, 14(1):5–51, July 2003.

[32] W. M. P. van der Aalst and M. Weske. The p2p
approach to interorganizational workflows. In
Advanced Information Systems Engineering, pages
140–156. Springer, 2001.

