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Abstract. Distributed interorganizational processes can be designed by
first creating a global process, which is then split into processes or views
for each participant. Existing methods for automating this transforma-
tion concentrate on the control flow and neglect either the data flow or
address it only partially. Even for small interorganizational processes,
there is a considerably large number of potential realizations of the data
flow. We analyze the problem of generating message exchanges to realize
the dataflow in depth and present a solution for constructing data flows
which are optimal with respect to some design objectives. The approach
is based on a definition of the correctness of data flow and a complete
set of transformations which preserve correctness and allow to search for
an optimal solution from a generated correct solution.

1 Introduction

Interorganizational business processes face the challenge to broaden the highly
successful technology of intraorganizational processes to a fully distributed col-
laboration of autonomous entities retaining the advantages of intraorganizational
business process management which extensively takes advantage of a central co-
ordination. One of the major differences between centralized and distributed
process management is the access to data: uniform access to a joint central data
store on one hand and distributed management of data with explicit exchange
of data via messages on the other hand.

In this paper we focus an a phase in the development of an interorganizational
workflow where the explicit dataflow between participants is established. Start-
ing point of our considerations is an interorganizational process definition which
assumes a global data store. This model is then augmented with messages for
passing data between participants such that the process model can be executed
in a full distributed way, respectively projected onto the participants to define
the interface of their internal process (e.g. by process views [3]). An initial pro-
cess definition consists of a set of activities, control flow between the activities,
assignment of the activities to participants and input and output parameters of



activities. Many approaches such as [12, 13, 26, 24, 9, 6] start with a global process
definition and follow a top down or mixed strategy. A global process definition
including input and output data already implicitly defines the data flow between
participants. For the explicit realization of the data flow, however, there are nu-
merous possibilities [15, 19]. Nevertheless, there are no approaches which take
this multitude of solutions explicitly into account and, therefore, cannot reason
about the quality of the solution. While [26, 23, 24] do not consider data flow at
all, [13, 12] restrict the data flow to the distribution of decision variables. [9, 6]
address data flow, however, only a single solution based on one fixed strategy is
generated.

Take for example the following trivial process fragment: lets an activity A
produce the parameters x and y, the succeeding activity B updates x, and the
third activity C needs x and y. There are basically two solutions: (a) transitive
transfer: the interface of B is widened to also include y (assuming that B is also
admitted to see y) such that B can pass y to C, or (b) explicit data channel [19]:
A sends y directly to C which requires additional messaging activities which
are not yet included in the process definition. Now consider that B is executed
conditionally. A simple solution, as proposed by [6] is that A always sends x and
y to C. On the one hand, this results in additional message overhead and on
the other hand C may not even be allowed to get access to the (intermediate)
value of x, if B is executed. If this is the case a better solution would be to only
transfer x from A to C, if B is not executed later.

One can easily see that for a given process definition as above there are
numerous solutions for establishing a correct explicit data flow. We can reason
about properties of a solution and define criteria, such as the number of (addi-
tional) data transfers via messages, the number of transitively passed data, etc.,
for choosing among the possible solutions.

The major contribution of this paper is a set of equivalence transformations
on processes with explicit data flow that allow us to define the complete solution
space in which we can (heuristically) search for the best solution with respect
to constraints and an objective function.

The results presented here can be used for several purposes: It is possible to
automatically generate the explicit data flow in interorganizational workflows, to
check whether a participant with a given unchangeable process interface can be
accommodated to join the interorganizational workflow, or to verify and evaluate
procedures and guidelines for establishing the data flow for interorganizational
processes.

2 Process Model

2.1 Basic Process Model

We follow here the approach that an interorganizational business process is de-
fined as a process rather than as a of set of protocols between two participants.
For defining the process we use block-structured workflow nets [8] supporting the
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usual basic control flow patterns sequence, PAR split / join, and XOR split/join
[25, 22]. We focus on block structured workflow-nets as they prevent typical flaws
of unstructured business processes dealing with data [1] and are also in line with
the WS-BPEL[17] standard. The process definition is extended with data defini-
tion, i.e. global variables may be defined and for each activity we denote which
variables are input for this activity and which variables are output. Further-
more, we assign to each activity and each control step to one of the participants
as actor. Figure 1 shows both the graphical and textual representation of our
process meta mode. In our notation, Aa(R,W ) is an activity step where A is
the label of the task to be executed by particpant a. R defines the set of input
variables, W defines the set of output variables. Abstract blocks are placeholders
for any sub-process (including empty ones) and are represented by their label.
SEQ(A,B) defines a sequence of the blocks A andB. Sequences of more than two
elements can also be defined by nesting: SEQ(A,SEQ(B,C)) ≡ SEQ(A,B,C).
XORpx,pj(cb, A,B) defines a xor-block, where the xor-split is executed by par-
ticipant px, the xor-join is executed by participant pj. Block A is executed, if
the condition cb holds, otherwise B. PARps,pj(A,B) defines a par-split, where
the split is executed by participant ps and the join is executed by participant
pj. We also use a graphical representation which in analogy to the usual BPMN
notation. The major difference is that we also depict which participant executes
a step (subscript letters), the set of input and output variables of activity-steps
and the condition of XOR splits. A communication step (also called send-receive
step) is denoted by SRs(X, r, c) defines that parter s sends the content of the
set of variables X to participant r, if the condition c holds.

2.2 Decision Model and Coordination

The XOR split requires special attention in interorganizational processes. There
are the following possibilities: (1) The condition is not defined in the global
process, or (2) the condition is defined using some global variables. In case (1)
the actor of the XOR-split makes the decision and informs the other participants,
if necessary. In case (2) each participant could make the decision. However, this
requires that all participants receive all variables appearing in the condition to
make the decision (i.e. evaluate the condition). This may result in additional
communication overhead. Therefore and for providing a uniform treatment for
both cases we treat case(2) like case (1): the actor of the XOR split evaluates
the condition.

There exist various possibilities for the coordination of different participants:
(1) deferred constructs, where the participants are implicitly informed by the

message they receive or do not receive. For an example, step Bb in Figure 2 does
not need to know about the decision of the xor-split. Only when Bb is called
participant b joins the process. In contrast participant a who executes the steps
Aa and EA must also be informed if Ea is not called. Otherwise, a would wait
forever to be called. (See also death paths elimination in BPEL [9].)

(2) the actor sends the result of the decisions to the other participants. This
allows each participant to execute each (required) xor-block locally.
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Fig. 1. Graphical Representation of the Process Model

We follow the second approach and require that for XORxs,pj(b, A,B) the
condition b refers only to one single boolean variable called decision variable,
which is output of a preceding activity called decision step DESCxs({...}, {b})
with the same actor as the xor-split. This is not a restriction of the generality as
this pattern can be generated automatically. For the coordination it is important
that all participants take the same decisions. Since variables can in general be
updated, dependent xor-gateways or send-receive steps rely on the value a deci-
sion variable had when it was written by the deciding participant. To make our
life (and that of workflow designers) easier, we require that decision variables
must not be updated after their corresponding xor-gateway was executed.

Data access within parallel blocks may lead to race conditions. In an in-
traorganizational setting this can be resolved by a transactional data store. For
distributed processes we do not assume a distributed transactional data store
and, therefore, do not allow parallel read-write or write-write dependencies be-
tween variables, i.e. if a variable is output in some activity it must not appear
as input or output in branches parallel to this activity.

2.3 Realizing Interorganizational Data-Flow

The process definition discussed above uses global variables as if there would be
a global data store like in intraorganizational processes. This means it is assumed
that each activity can access the most recent value of each variable. Implicitly
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Fig. 2. Implicit Data-Flow in an interorganizational Process

this defines a data flow between the participants. For the fully distributed enact-
ment of interorganizational processes we have to realize this implicit data flow
by augmenting the process definition with explicit message exchanges which pass
the content of variables between participants.

Figure 2 presents an example process using the graphical representation. The
first step is represented as Aa({x}{x}) in the textual representation. Therefore,
step A of participant a has variable x as input and as output.

In the example there are 5 data-flow dependencies between tasks of different
participants shown with dotted lines. Data-flow dependencies can be conditional.
For example step Ea only needs x from Bb, if Bb and Ea are executed (if the
conditions b1 and b2 hold). In order to support an interorganizational operation
of the process, each data-flow between different participants needs to be im-
plemented by messages. Now there exist multiple solutions to support the data
needs of Ea. We may add a message exchange right after the execution of Bb.
In this case the message is only sent if Bb is executed. However, it will always
be sent, even if Ea is not executed later. The decision whether Ea is executed
is made later. Therefore, it is impossible to predict whether the message needs
to be sent or not. However, sending the message does not lead to an error in
the data-flow. A message is sent but its contents are not consumed as they are
overridden by a succeeding message. So this solution contains redundant mes-
sage exchanges but it is correct. Another option is to add the message exchange
sending x from b to a directly before Ea. However, in this case it must only be
executed if Bb was executed. Otherwise a will get a wrong value for x. While
b knows wether Bb was executed participant a does not and therefore needs to
know whether a message will arrive.

To cope with this problem our process model supports the notion of con-
ditional message exchanges, which are implemented with communication steps
(also called send-receive steps). A send-receive step is denoted by SRp1(X, bn, b),
meaning that parter p1 sends the content of the set of variables X to participant
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bp, if the condition b holds. In the graphical notation we represent send-receive
steps in analogy to BPMN choreography tasks. See the first step of TS1a in Fig-
ure 3 as an example. A communication step is implemented as a sending task in
the local process of the sender and as a receiving task in the local process of the
receiver. In our example, we can now add the send-receive step SRb({x}, a, b1)
directly before Ea to solve the previously discussed problem.

2.4 Process Model Definitions

In this section we formalize our workflow model and provide the necessary defi-
nitions for the specification and verification of equivalence transformations. We
define a process model here as a nested structure to emphasize that we deal
with full blocked processes. this nested structure can easily be transformed into
a process graph (workflow net).

Definition 1. Process Model: A process model consists of sets of participants
(partners) P , variables V (including boolean decision variables D), task labels
T , and a block defined recursively as follows:
Let S be a task label, R, W sets of variables, A, B blocks c a decision variable,
b a boolean expression consisting of the decision variables d1, . . . dn then

1. Sp1(R,W ) is a block (activity step),

2. SRs(X, r, b) is a block (communication step),

3. the empty block ε is a block, and

4. SEQ(A, . . . , B) is a block (sequence)

5. XORp1,p2(c, A,B) is a block (alternative),

6. PARp1,p2(A,B) is a block (parallelism).

All p1, p2 are called actors of their respective blocks, s is the sender and r is
the recipient of a communication step, R, X, c, and d1, . . . dn are (sets of) input
variables, W and X are output variables.

In addition, a block inherits all input variables of its superordinate block.
Predecessor and successor relationships are defined as usual.

The only type of blocks which may contain subordinate block and that has
input variables (decision variables) are xor-blocks. Xor-Blocks have exactly one
decision variables as input, which defines which branch of the xor-block is taken.
All blocks which are nested in a xor-block have the decision variable as input
because the corresponding participants must know which route was taken.

Definition 2. Initial Process: An initial process is a process that does not
contain any communication steps.

Definition 3. Augmentation: An augmentation of an initial process P con-
tains all the steps of P in the same topological order and some communication
steps in addition.
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Definition 4. Instance Type and Instantiation: Every possible instantia-
tion I of the set of decision variables of a process P constitutes an instance type,
P I which is defined as a sub-model where each xor has exactly one sub-block
(depending on the value of the decision variable) and only those communication
steps where the condition evaluates to true.

We now define that such an augmented process correctly realizes the implicit
data flow of an interorganizational process if for centralized and distributed
executions the value of each input variable of a step originates from the output
of the same activity.

Definition 5. Origin: The origin of an input parameter x in block a of an
instance type I, o(P I , a, x), is defined as follows: If b is the closest predecessor
activity step of a with x as output parameter then o(P I , a, x) = b.

Definition 6. Correctness of an Initial Process: An initial process is cor-
rect, if all input parameters of all steps have a unique origin.

This correctness requirements covers the usual data flow faults like uninitial-
ized variables and race conditions [21]. This also means that we do not allow
data-flow between parallel blocks. We emphasize that due to the hierarchical
definition of process models it is not possible to define an incorrect workflow
net.

For the distributed execution of an augmented process we have to consider
that a participant only can access the content of a variable if it was produced
locally or if it was received through a communication step.

Definition 7. Distributed Origin: The distributed origin of the input pa-
rameter x in block a of an instance type P I , od(P I , a, x) is defined as follows:
Let p be the actor or sender of a and let b be the closest predecessor step of
a with x as output parameter and p as actor (for activity steps) or recipient
(for communication steps). If b is an activity step then od(P I , a, x) = b, if b is a
communication step SRs(X, p, b) then od(P I , a, x)=od(P I , b, x).

Definition 8. Correct Augmentation The augmentation P of a process is
correct, iff for each instantiation I of decision variables, for each input variable
x of each block a: o(P I , a, x) exists and is unique and od(P I , a, x) = o(P I , a, x).

3 Equivalence Transformation on Augmented Processes

There exists numerous correct augmentations of the data-flow of a process. For
example all updated variables may be sent as soon as possible to all participants,
they may be sent as late as possible or every data-exchange may follow the
control-flow including transitive transfers. In this section we present a set of
transformations on augmented processes that allow to derive all other correct
augmentations.
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Definition 9. Equivalence Transformation on Augmented Processes: A
transformation T on the communication steps of a correctly augmented process
P , resulting in a new process P ′ is an equivalence transformation, iff P ′ is also a
correctly augmented process for any P and any possible application of T on P .

3.1 Equivalence Transformations on Sequences

We provide a graphical description of equivalence transformations on sequences
in Figure 3 and discuss each transformation shortly in the remainder of this
section. The function ref(b) returns the set of all variables, referenced by the
boolean expression b.

TS1a - Swap (Send-Receive / Activity): A send-receive step can be
swapped with an activity, unless the activity is the destination of the send-
receive step or the activity writes to some variable transmitted by the send-
receive step: SEQ(srp1(X, pn, b), ap2(R,W )) ≡ SEQ(ap2(R,W ), srp1(X, pn, b)),
unless (W ∩X 6= {}) ∨ (R ∩X 6= {} ∧ pn = p2) ∨ ref(b) ⊆ W . The predicate
ref(b) returns the set of all (decision) variables that are referenced by b.)

Proof 1. Proof that TS1a is an equivalence transformation

Let P be a correctly augmented process and P ′ be a process derived from
P by applying TS1a once. Based on Definition 8 for every instantiation I of
decision variables, for each input variable x of each block r: o(P I , a, x) exists
and is unique and od(P I , a, x) = o(P I , a, x). We will show that this property
is preserved for P ′ by proving that for every instantiation I and every block r,
reading any variable x: od(P I , r, x) = o(P I , r, x) = od(P ′I , r, x) = o(P ′I , r, x)
holds.
Therefore, there also exists a unique origin for o(P ′I , r, x). There are the following
cases for the reading block r:

1. r is located anywhere before the swapped elements:
SEQ(r, ..., ap2(R,W ), srp1(X, pn, b)) or SEQ(r, ..., srp1(X, pn, b), ap2(R,W )).
The origin and distributed origin only address previous steps of r.
Therefore, for every input variable x of r:
od(P I , r, x) = o(P I , r, x) = od(P ′I , r, x) = o(P ′I , r, x).

2. r is the send-receive step: r = srp1(X, pn, b) Input variables of r are the set
X and all referenced variables of the condition ref(b). From the precondition
of TS1a follows that W ∩X ≡ {} ∧ ref(b) *W . Therefore, for every input
variable x of r:
ap2(R,W ) 6= o(P ′I , r, x) ∧ ap2(R,W ) 6= od(P ′I , r, x). Consequently, the ori-
gin is some step before ap2(R,W ). Based on the definition of the origin and
distributed origin: od(P I , r, x) = o(P I , r, x) = od(P ′I , r, x) = o(P ′I , r, x).

3. r is the activity-step: r = ap2(R,W ). Input variables of r are defined by the
set R. From the precondition of TS1a follows that if R ∩X 6= {}, then pn
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6= p2. Therefore, for every input variable x of r:
x ∈ R ∧ x ∈ X =⇒ pn 6= p2. ap2(R,W ) is the direct predecessor or successor
of ap2(R,W ). Therefore, od(P I , r, x) cannot be realized via srp1(X, pn, b) in
P or P ′. Consequently od(P I , r, x) = o(P I , r, x) = od(P ′I , r, x) = o(P ′I , r, x).

4. r is any step after the swapped elements in P or P ′ and before another ac-
tivity writing to x in P I or P ′I .
SEQ(ap2(R,W ), srp1(X, pn, b), . . . , r). From the precondition of TS1a fol-
lows that W ∩X ≡ {}. Therefore, for every input variable x of r:
x ∈ W =⇒ x /∈ X.
x ∈ X =⇒ x /∈ W .
if x ∈ W , and o(P I , r, x) = ap2(R,W ), then also od(P I , r, x) = ap2(R,W )
∧ o(P ′I , r, x) = ap2(R,W ) (the origin is not influenced by intermediate
send-receive steps). Since srp1(X, pn, b) cannot send x, also od(P ′I , r, x) =
ap2(R,W )
if x ∈ X: ap2(R,W ) cannot be the origin of x.
Therefore, od(P I , r, x) = o(P I , r, x) = od(P ′I , r, x) = o(P ′I , r, x).

TS1b - Swap (Send-Receive - Send-Receive): Two send-receive steps
in a sequence can be swapped, unless one is the destination of the other.
SEQ(srp1(X, pn, b1), srp2(Y, pm, b2))≡ SEQ(srp2(Y, pm, b2), srp1(X, pn, b1)), un-
less: (pn = p2 ∨ pm = p1) ∧ (X ∩ Y 6= {} ∨ ref(b1) ⊆ Y ∨ ref(b2) ⊆ X).

Proof 2. Proof that TS1b is an equivalence transformation

Let P be a correctly augmented process and P ′ be a process derived from
P by applying TS1b once. Based on Definition 8 for every instantiation I of
decision variables, for each input variable x of each block r: o(P I , a, x) exists
and is unique and od(P I , a, x) = o(P I , a, x). We will show that this property
is preserved for P ′ by proving that for every instantiation I and every block r
reading any variable x: od(P I , r, x) = o(P I , r, x) = od(P ′I , r, x) = o(P ′I , r, x).
Therefore, there also exists a unique origin for o(P ′I , r, x). There are the following
cases for the reading block r:

1. r is located anywhere before the swapped elements:
See Case 1 of proof of TS1a.

2. r is one of the send-receive steps: Input variables of r are the set X and all
referenced variables of the condition ref(b). From the precondition of TS1b
follows (pn 6= p2 ∧ pm 6= p1) ∨ (X ∩ Y ≡ {}∧ ref(b1) * Y ∧ ref(b2) * X).
Since there is no other step between the send-receive steps, od(P I , r, x) or
od(P ′I , r, x) cannot be realized via the other send-receive step. Therefore,
for every input variable x of r: od(P I , r, x) = o(P I , r, x) = od(P ′I , r, x) =
o(P ′I , r, x).

3. r is any step after the swapped elements in P or P ′ and before another ac-
tivity writing to x in P I or P ′I :
SEQ(srp1(X, pn, b1), srp2(Y, pm, b2), . . . , r) or
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SEQ(srp2(Y, pm, b2), srp1(X, pn, b1), . . . , r)
For every input variable x of r:
x ∈ X ∧ pn ≡ p2 =⇒ x /∈ Y
x ∈ Y ∧ pm ≡ p1 =⇒ x /∈ X
Therefore, srp1(X, pn, b1) and srp2(Y, pm, b2) are independent of each other.
There cannot exist any distributed origin od(P I , r, x) which is based on
srp1(X, pn, b1) and on srp2(Y, pm, b2). Therefore, od(P I , r, x) = o(P I , r, x) =
od(P ′I , r, x) = o(P ′I , r, x).

TS2 - Change Sender: Direct sending of variables to multiple participants
is equivalent to transitive sending of the same set of variables to the same partici-
pants. SEQ(srp1(X, pn, b), srpn(X, pm, b))≡ SEQ(srp1(X, pn, b), srp1(X, pm, b))

Proof 3. Proof that TS2 is an equivalence transformation

Let P be a correct augmentation and P ′ be an augmentation derived from
P by applying TS2 once: For every instantiation I and every block r executed
after srpn(X, pm, b) or after srp1(X, pm, b) reading any variable x: od(P I , r, x) =
o(P I , r, x) = od(P ′I , r, x) = o(P ′I , r, x). We get the following cases for r:

– r has p1 or pn as actor: r cannot be effected by TS2 since p1 must have the
variable and pn either sends it ore gets it by p1 senders.

– r has pm as actor and some step sp1 as origin:
For P (left hand side of TS2): od(P I , r, x) = od(P I , srpn(X, pm, b), x) =
od(P I , srp1(X, pn, b), x) = sp1
For P ′ (right hand side of TS2): od(P ′I , r, x) = od(P ′I , srp1(X, pm, b), x) =
sp1

– r has px as actor and some step spz as origin and x is transported via
p1 and pm to px: For P : od(P I , r, x) = . . . od(P I , srpn(X, pm, b), x) =
od(P I , srp1(X, pn, b), x) . . . = spz
For P ′: od(P ′I , r, x) = . . . od(P ′I , srp1(X, pm, b), x) . . . = spz

TS3 - Remove/Add at End: A send receive step at the end of a process is
equivalent to no send-receive step at the end of the process. SEQ(A, srp(X, p′, b))
≡ A, when the sequence is located at the upper most level of the process.

Proof 4. Proof that TS3 is an equivalence transformation

Obviously there cannot exist any instance type of the process, where some
block reads any variable after the end of the process. Therefore, the correctness
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of the augmentation cannot be effected by removing (or adding arbitrary send-
receive steps) at the end of the process.

TS4 - Absorb/Add: A send-receive step that sends only variables writ-
ten by some succeeding activity step is equivalent to only the execution of the
activity-step: SEQ(srp(X, pn, b), apm(R,W )) ≡ apm(R,W ) where X ⊆ W , un-
less R ∩ X 6= {} ∧ pn = pm.

Proof 5. Proof that TS4 is an equivalence transformation

Based on the precondition of TS4 follows: pn = pm =⇒ R ∩ X ≡ {}.
Therefore, apn(R,W ) cannot read x, if srp(X, pn, b) sends x to pm. Consequently
only the distributed origin of variables read by blocks executed after apn(R,W )
can be effected by TS4. However, directly following from the definition of the ori-
gin and the distributed origin every succeeding step of apn(R,W ) has apm(R,W )
as its origin and its distributed origin for every variable v ∈ W unless another
step writing to v is executed after apn(R,W ). Therefore, the origin and the dis-
tributed origin cannot be changed by the application of the transformation.

TS5 - Split/Merge of Variables It is equivalent to transmit a set of variables
by one single send-receive step or by two send-receive steps:
SEQ(srp1(X, pn, b), srp1(Y, pn, b)) ≡ srp1(X ∪ Y, pn, b)

Proof 6. Proof-Sketch that TS5 is an equivalence transformation

The proof follows directly from the definition of the distributed origin. In or-
der to guarantee that distributed origin and origin are equivalent for every read
variable, the packaging of variables to send-receive steps has no influence as long
as the condition for the execution of the communication step(s) are equivalent,
which is guaranteed by the transformation.

TS6 - Split/Merge Conditions: Two send-receive steps in a sequence that
transfer the same set of variables from the same source participant to the same
target participant are equivalent to one single send-receive, which is executed if
at least one of the conditions holds:
SEQ(srp1(X, pn, b1), srp1(X, pn, b2)) ≡ srp1(X, pn, {b1 ∨ b2})
Proof 7. Proof that TS6 is an equivalence transformation

SEQ(srp1(X, pn, b1), srp1(X, pn, b2)) and srp1(X, pn, {b1∨b2}) result ins ex-
actly the same possible instance types. Therefore, they are strictly equivalent.

3.2 Equivalence Transformations on XOR

We first introduce two predicates: hasV alue and takesPart. hasValue(p1,var,pos)
returns true, if participant p1 certainly has the value of the variable var before

11



Fig. 3. Equivalence Transformations on Sequences

the execution of the block pos. takesPart(xorBlock,participant) returns true, if
the participant participant executes any step of the xor-block xorBlock or an
subordinate block. Figure 4 shows all equivalence transformations related to xor-
blocks.

TX1 - Passing XOR-splits One send-receive step s located directly before
a xor-split is equivalent to two send-receive steps with the same parameters as
s, where one is located in each branch of the xor-split directly following the xor-
split, if the sender and the receiver of s have the current value of the decision
variable: SEQ(SRp1(X, pn, b), XORp2,pj(xb,A,B)) ≡
XORp2,pj(xb, SEQ(SRp1(X, pn, b) , A), SEQ(SRp1(X, pn, b), B)),
if hasV alue(p1, xb,XSp2,pj ∧ has V alue (pn, xb,XSp2,pj).

Proof 8. Proof that TX1 is an equivalence transformation

Let P be a correctly augmented process and P ′ be a process derived from
P by applying TX1 once. Based on Definition 8 for every instantiation I of
decision variables, for each input variable x of each block r: o(P I , a, x) exists
and is unique and od(P I , a, x) = o(P I , a, x). We will show that this property
is preserved for P ′ by proving that for every instantiation I and every block r
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Fig. 4. Equivalence Transformations of Data-Send-Receive Steps for XOR

reading any variable x: od(P I , r, x) = o(P I , r, x) = od(P ′I , r, x) = o(P ′I , r, x).
Therefore, there also exists a unique origin for o(P ′I , r, x). In analogy to the proof
of TS1a the potentially effected reader r reading variable x cannot exist before
XORp2,pj . The precondition of TX1 requires that hasV alue(p1, xb,XSp2,pj ∧
hasV alue (pn, xb,XSp2,pj). Therefore, when r = XORp2,pj(xb,A,B), r can only
be a reader of x if the transmission is redundant. E.g. there must exist a different
send-receive step for x, before r, which will result in the same distributed origin
of x for r.
A reader with changed distributed origin may consequently only exist after the
xor-split. For the xor-block XORp2,pj(xb,A,B) their are exactly two different
instantiations: Either the value of the decision variable xb is false or true. The
send-receive step is added to both branches and therefore, for every possible
instantiation the send-receive step follows the xor-node. From the fact that the
xor-block itself cannot be an origin for any step (does not write to variables)
follows that no subsequent step can have a different distributed origin or origin
when SRp1(X, pn, b) is located before or after the xor-split.
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TX2 - Passing XOR-Join TX2a Passing XOR-Join on true: One send-receive
step s located directly before a xor-join in the true branch of a xor-split is equiv-
alent to one send-receive step s′ directly after the xor-join, if all parameters of s′

and s are equivalent but the condition in s′ is a conjunction of the one of s and
the decision variable of the xor-split. XORp2,pj(xb, SEQ(A,SRp1(X, pn, b)), B)
≡ SEQ(XORp2,pj(xb,A,B), SRp1(X, pn, {b ∧ xb})
TX2B Passing Join on false: XORp2,pj(xb,A, SEQ(B,SRp1(X, pn, b))) ≡
SEQ(XORp2,pj(xb,A,B), SRp1(X, pn, {b ∧ ¬xb})

Proof 9. Proof-Sketch that TX2 is an equivalence transformation

1. The XOR-Join has no input variable. Therefore, it cannot be a reader.
2. The XOR-Join has no output variable. Therefore, no subsequent step can have
it as an origin.
3. In every instantiation only one branch of the xor-block can be executed. There-
fore, no subsequent reader can be effected by the change.

TX3 - Jump over XOR-Block A send-receive step s, which is located directly
before a xor-split is equivalent to a send-receive step directly after the corre-
sponding xor-join, if s transmits only the decision variable of the xor-split and the
target participant of s does not take part in the xor-block or any sub-block of it:
SEQ(SRp1(X, pn, b), XORp2,pj(xb,A,B))≡ SEQ(XORp2,pj(xb,A,B), SRp1 (X
, pn, b)), if ¬takesPart(XSp2, pn) ∧X ≡ {xb}

Proof 10. Proof that TX3 is an equivalence transformation

Based on the definition of inputs of blocks, if a participant des not take part in
the XOR-block, then this participant cannot have an activity which requires the
decision variable as input inside the xor-block. E.g. there exists no step, inside
the xor-block where the origin or distributed origin can be effected by the change.

TX4 - Inherit Conditions Given a send-receive step s with a condition b,
which is nested into some xor-block x referencing the decision variable bx: b ≡ b
∧ bx, if s is located in Block A of x and b ≡ b ∧ ¬bx if s is located in Block B
of x.

Proof 11. Proof-Sketch that TX4 is an equivalence transformation

An defined in the process model every block inherits the conditions of every
superordinate block implicitly. Making this explicit can consequently not change
the correctness.
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TX1b - Add Send/Receive after XOR-Split Given a send-receive step
s as a direct successor of a xor-split, we can add another send-receive step s′ with
the same parameter as s as a direct successor of the xor-split in the other branch.
This is a one-way transformation. XORp2,pj(xb, SEQ(SRp1(Xpn, b), A), B) ∨
XORp2,pj(xb,A, SEQ(SRp1(Xpn, b), B)
=⇒ XORp2,pj(xb, SEQ (SRp1 (X, pn, b), A), SEQ(SRp1(X, pn, b), B)).

Proof 12. Proof-Sketch that TX1b is an equivalence transformation

TX1b is a shortcut for the application of TS3 and TS4 in combination with
the other transformations. See the corresponding proofs.

3.3 Equivalence Transformations on Parallel Blocks

Equivalence transformations regarding par-blocks need to consider in which
branch reading or writing activities of the transmitted variables are located.
We first define the predicates hasWriter, hasReader and inBlock:
hasWriter(var,Block) returns true if the variable var is written anywhere in
the block (recursively). hasReader(var, block, participant) returns true, if the
variable var is read by participant participant in the block (recursively). in-
Block(var, Block, participant) is true, if hasWriter(var,Block) or hasReader
(var, block, participant). Figure 5 illustrates the transformations TP1a, TP1c,
TP2a as examples.

TP1: Passing PAR-Split: A communication-step, which is located directly
before a par-split is equivalent to a communication-step in the first position of
the branch with a consumer or a writer to every transferred variable. There are
the following cases: A consumer or writer for every transmitted variable is in
block A (TP1a), a consumer or writer for every transmitted variable is in block
B (TP1b), a consumer for every transmitted variable is in Block A and in B
(TP1c). If there is no consumer of any transmitted variable in A and B, then
also TP1a and TP1b applies.

TP1a: SEQ(SRp1(X, pn, b), PARps,pj(A,B)) ≡ PARps,pj(SEQ(SRp1(X, pn
, b), A), B), if ∀v ∈ X : (inBlock(v,A, pn) ∧ ¬inBlock(v,B, pn)) ∨ (¬inBlock(v
,A, pn) ∧ ¬inBlock(v,B, pn))

TP1b: SEQ(SRp1(X, pn, b), PARps,pj(A,B)) ≡ PARps,pj(A,SEQ(SRp1(X,
pn, b), B)), if ∀v ∈ X : (inBlock(v,B, pn)∧¬inBlock(v,A, pn))∨(¬inBlock(v,A
, pn) ∧ ¬inBlock(v,B, pn))

TP1c: SEQ(SRp1(X, pn, b), PARps,pj(A,B))≡ PARps,pj(SEQ(SRp1(X, pn,
b), A), SEQ(SRp1(X, pn, b), B)), if ∀v ∈ X : (inBlock(v,A, pn)∧inBlock(v,B, pn))
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Proof 13. Proof-Sketch that TP1 is an equivalence transformation

Let P be a correctly augmented process and P ′ be a process derived from
P by applying TS1b once. Based on Definition 8 for every instantiation I of
decision variables, for each input variable x of each block r: o(P I , a, x) exists
and is unique and od(P I , a, x) = o(P I , a, x). We will show that this property
is preserved for P ′ by proving that for every instantiation I and every block r
reading any variable x: od(P I , r, x) = o(P I , r, x) = od(P ′I , r, x) = o(P ′I , r, x).
Therefore, there also exists a unique origin for o(P ′I , r, x). There are the following
cases for the reading block r:

In analogy to the proof of TS1a, if step r is located before the par-split it
cannot be effected by TP1. The par-split itself has no input variables. Therefore,
only steps executed after the par-split may be effected by the transformation.
Let pn be the participant assigned to r. We get the following cases for r reading
x of pn:

1. r is in sub-block A and pn has no step reading x in sub-block B

Following from TP1a, we get ∀x ∈ X : (inBlock(x,A, pn)∧¬inBlock(x,B, pn))
=⇒ SEQ(SRp1(X, pn, b), PARps,pj(A,B)) ≡
PARps,pj(SEQ(SRp1(X, pn, b), A), B)
Since SEQ(SRp1(X, pn, b) is certainly executed before r in A and the par-
split has no output variable we get:
od(P I , r, x) = o(P I , r, x) = od(P ′I , r, x) = o(P ′I , r, x).

2. r is in sub-block B and pn has no step reading x in sub-block AS and the
par-split has no output variable
Following from TP1b, we get ∀x ∈ X : (inBlock(x,B, pn)∧¬inBlock(x,A, pn))
=⇒ SEQ(SRp1(X, pn, b), PARps,pj(A,B)) ≡
PARps,pj(A,SEQ(SRp1(X, pn, b), B))
Since SEQ(SRp1(X, pn, b) is certainly executed before r in B we get:
od(P I , r, x) = o(P I , r, x) = od(P ′I , r, x) = o(P ′I , r, x).

3. r is in sub-block A and pn also reads x in sub-block B with activity r′ and
the par-split has no output variable.
Following from TP1c, we get ∀x ∈ X : (inBlock(x,A, pn)∧inBlock(x,B, pn))
Longrightarrow SEQ(SRp1(X, pn, b), PARps,pj(A,B)) ≡
PARps,pj(SEQ(SRp1(X, pn, b), A), SEQ(SRp1(X, pn, b), B)). There is no
predefined ordering between r and r′. Based on Definition 6 r and r′ can-
not write to x. They may only read x. Therefore, in order to preserve the
correctness, it is sufficient to guarantee that SRp1(X, pn, b), B) is certainly
executed before r and before r′. Since the ordering within one branch is pre-
served for every possible instantiation we get:
od(P I , r, x) = o(P I , r, x) = od(P ′I , r, x) = o(P ′I , r, x).
od(P I , r′, x) = o(P I , r, x) = od(P ′I , r′, x) = o(P ′I , r, x).
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4. r is not in A and not in B but after the par-block. In this case TP1a
and TP1b may apply. Both transformations enforce, that SRp1(X, pn, b), B)
is certainly executed before r because the par-join node synchronizes sub-
block A and sub-block B. Therefore, we get: od(P I , r, x) = o(P I , r, x) =
od(P ′I , r, x) = o(P ′I , r, x).

TP2: Passing PAR-Join: A send-receive step located in some branch B1
of a par-split directly before a par-join is equivalent to an identical send-receive
directly after a par-join, if all variables transmitted by the send-receive step are
read or updated in branch B1 and none is read or updated in the other branch,
or if none of the variables is read or updated in any branch. In particular there
are the cases: A reader or writer only in branch A, only in Branch B or nowhere:

TP2a: PARps,pj(SEQ(A,SRp1(X, pn, b)), B) ≡
SEQ(PARps,pj(A,B), A, SRp1(X, pn, b)), if ∀v ∈ X : (inBlock(v,A, pn) ∧
¬inBlock(v,B, pn)) ∨ (¬inBlock(v,A, pn) ∧ ¬inBlock(v,B, pn))

TP2b:PARps,pj(SEQ(SRp1(X, pn, b), A), B) ≡
SEQ(PARps,pj(A,B), A, SRp1(X, pn, b)), if ∀v ∈ X : (inBlock(v,B, pn) ∧
¬inBlock(v,A, pn)) ∨ (¬inBlock(v,A, pn) ∧ ¬inBlock(v,B, pn))

Proof 14. Proof-Sketch that TP2 is an equivalence transformation

The proof of TP1 follows from the Definition of a correct initial process 6,
which forbids data-flow between parallel branches and data-flow between par-
allel branches and non parallel blocks thereafter. Therefore, only the following
cases are relevant: 1) Data-Flow originating from subblock A of the par-block.
2) Data-Flow originating from subblock B of the par-block.
3) Data-Flow neither A nor B.

TP2a handles Case 1 and Case 3, TP2b handles Case 2 and Case 3. Since
the par-join does not have input variables, only steps after the par-join can be
effected. All Cases are handled correctly by TP2.

3.4 Completeness

Theorem 1 (Completeness of the Equivalence Transformations). Every correct
augmentation can be created by the application of the transformations starting
from any correct augmentation.

Proof 15. Proof-Sketch

We first define a normal form of an augmentation. An augmentation P is in
normal form, when after each writer Wp(R,W ) a sequence of communication
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Fig. 5. Example Equivalence Transformations on PAR-Split

steps exists, which sends each x ∈ W from p separately to all other participants
and the condition of the send-receive steps is the inherited condition of the su-
perordinate blocks.

We will now show that any correct augmentation can be transformed to this
normal-form:

1. Apply TS5 from right to left until every communication steps sends a single
variable.

2. Apply TS6 from right to left, until no condition contains a disjunction.
3. Apply TS1a / TS1b / TX1 / TX2 / TX3 / TP1 / TP2 / TX4 (from right

to left) until every send-receive step is located directly before its origin (step
writing to this variable).

After no further movement of any communication step is possible (ignoring
changes in the order within a sequence of send-receive steps), apply TS2 in com-
bination with TS1 to change the sender to the origin (remove transitive sends).
Finally apply TS3 and TS4 to generate missing (redundant) send-receive step.
Restart the process to move newly introduced steps to the position directly after
the writer. Apply TX4 to make all inherited conditions explicit.
Finally the normal-form is reached.

The proof follows from the fact that every transformation has an inverse.
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4 Applications

The presented equivalence transformations provide a formal grounding for vari-
ous applications dealing with data-flow of interorganizational processes. We will
present three applications scenarios as examples here.

4.1 Optimizing Message Exchanges under Constraints:

Given an interorganizational process without communication steps we can gen-
erate the complete solution space of correct implementations of the data-flow.
This allows to select the solution that best fits the needs of the participants based
on objective functions and constraints. The best solutions heavily depends on
the user requirements. For example a major goal could be to minimize the num-
ber of message exchanges and favour message exchanges that can be integrated
into the control-flow, while accepting some potentially redundant transfers. In
addition acceptable solutions can be required to meet certain constraints. For
example a participant may not be allowed to receive the value of a certain vari-
able after it was written by some other participant or a participant should not
receive messages from certain other participants at all.
We have already implemented a prototype that uses best first search to find
optimal solutions based on the transformations. It allows the user to define his
objective function based on various parameters. Those parameters include the
weighted number of send-receive steps, the weighted number of transmitted vari-
ables and the number of transfers from unknown participants in the solution.
We weight send-receive steps based on their nesting level within xor-blocks and
their condition. For the weighted number of send-receive steps we count only
additional steps. Therefore, we do not count communication steps, which can be
integrated into the control-flow. When a solution is derived, local processes can
be generated for each participant by simple projection of the steps onto each
participant [13]. These local processes act as interfaces for the private processes
of the participants. We have conducted initial experiments with our implementa-
tion and the generated solutions are promising. Future work will address starting
with a more efficient initial augmentation and the application of sophisticated
heuristics and a flexible framework for modeling various constraints.

4.2 Integrating Participants with Existing Processes:

The previous scenario assumed a top-down development paradigm. However,
in many cases participants already have existing processes that may not be
changeable leading to a mixed approach. When participants with existing pro-
cesses want to join an interorganizational process only solutions that match their
(data) interfaces are applicable. Therefore, the rules can be applied both to test
whether their (data) interfaces are compatible with the interorganizational pro-
cess and to select the best solution based on an objective function.
This can be realized in analogy to the previous application scenario. The only
difference is that we start with an interorganizational process with fixed (data)
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interfaces of one or more participants. In a next step an initial augmentation is
created. Then solutions can be generated. However, only those are acceptable,
where the participants with existing interfaces have only send-receive steps that
are equivalent to their existing interfaces. In other words solutions are gener-
ated, where the non fixed participants act as mediators for the fixed ones. An
example is the following: One participant needs to receive the variables a, b, c
via one single message from participant e. However, a, b and c are all last up-
dated by different other participants. Then the equivalence transformations can
be used to generate solutions where participant e collects the results of the other
participants and then sends the variables with one single message.

4.3 Validation of Guidelines and Methods:

Using the equivalence definition we can also validate guidelines for designing
the dataflow or procedures generating the dataflow by analyzing whether the
resultuing augmented processes can be transformed to a process known to be
correct (e.g. the initial processes described in Section 4.1 above).

5 Related Work

In this paper we have proposed a theory of equivalence transformations on the
realization of data-flow for inter-organizational processes. As discussed in the ap-
plication section the proposed rules can be used to derive local processes based
on a global process. Well known approaches in this direction are the public to
private approach and multi-party contracts [26, 23, 24]. These approaches ad-
dress the projection of the control-flow onto different participants and define,
when the control-flow of a private process correctly implements the participant’s
projection of the global process. Our approach complements these approaches
by providing the solution space for the correct implementation of the implicit
data-flow using message exchanges.
This differs from typical choreography approaches [2] either in form of inter-
connection modeling or in form of interaction-centric modeling which are both
supported by BPMN (2) [18]. Interconnection modeling wires multiple (collab-
oration) models together using message exchanges. Interaction-centric modeling
is supported by choreography diagrams. An advantage of the interaction-centric
style is that a global view of the choreography exists, preventing typical flows
of not properly aligned models. However, they still require that the message
exchanges are modeled explicitly. We follow a third route. We begin with a
global process which describes the goals of the choreography in terms of control-
and data-flow requirements. In contrast to the previously discussed approaches,
message exchanges are not part of the global process. Instead our approach
allows to automatically generate an optimize the required message exchanges
(choreography) between the participants. We follow a model based correctness
by design approach for control- and data-flow based on process views [3]. We
have addressed the data-flow perspective in this paper, while the control-flow
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perspective including the proof of the correct projection and the generation of
realizable local processes for any global process and any assignment of partici-
pants was addressed in our previous work [13, 12].
A recent approach addressing data in choreographies is [14]. It proposes mod-
eling guidelines that allow to derive message contents of a given choreography
automatically. It is based on a global data model which is mapped to the local
ones of each participant. Since our rules allow to automatically generate opti-
mized message exchanges (choreograhies) our output can be used as an input
for [14] in order to resolve heterogeneities between the data representations of
the participants. The work in [15] addresses the realization of data-flow between
different participants. They propose a number of design patterns for the im-
plementation of data dependencies and are therefore inline with our approach.
However, instead of proposing common patterns we can generate the solution
space of possible implementations and automatically select the best fitting one
according to the users requirements.
There are numerous approaches that deal with the automatic partitioning of
BPEL processes. One major aim is to find assignments of participants that re-
sult in optimal data-flow [16, 4, 28, 7]. This setting is very different from our goal,
where the assignment of participants is fixed. Directly related to our approach
are role based partitioning methods for executable processes such as [9–11, 6, 5].
These approaches also allow to derive processes for each participant. However,
the implementation of the data-flow is based on a fixed strategy and they con-
sequently provide only one solution. An approach focusing on privacy aspects is
presented in [27]. It allows to define which participants may exchange messages
and to automatically find alternative paths if certain exchanges are forbidden.
In contrast, we have provided a general approach for optimizing the implemen-
tation of data-transfer between the participants based on various criteria, where
privacy issues are only one possible constraint.
The correctness of the (implicit) data flow of intraorganizational processes is
addressed in works such as [20, 21]. In contrast, our approach spans the solution
space for the correct realization of interorganizational data flow via message
exchanges, taking a (correct) global process with implicit data flow as input.

6 Conclusion

There exists various implementations for the data-flow of an interorganizational
process. In this paper we have provided a theory of equivalence transformations
that can act as a solid foundation for numerous applications such as: Top-down
development of interorganizational processes including the automatic optimiza-
tion of the data-flow between different participants and the enforcement of var-
ious constraints (eg. security / access rights). Finally it allows to systemati-
cally test the compatibility of an existing process with some interorganizational
process not only regarding the control-flow but also regarding the (optimized)
data-flow. Our future work includes the development of equivalence transfor-
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mations to additional control-flow patterns and to apply the rules for various
applications.
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