
Logical Design of Generalizations in

Object-Relational Databases

Johann Eder and Simone Kanzian

University of Klagenfurt

Institute of Informatics-Systems

eder@isys.uni-klu.ac.at skanzian@edu.uni-klu.ac.at

Abstract. The richer data models of object relational databases opens

many more options for the logical design of a database schema increasing

the complexity of logical database design enormously. Focusing on gen-

eralization constructs of conceptual models we explore the performance

implications of the various design alternatives for mapping generaliza-

tions into the schema of an object-relational database system.

1 Introduction

Database Design is the process to transform the results of the requirements anal-
ysis into a database schema of a specific database management system (DBMS).
The process starts with creating a conceptual model based on the results of
the requirements analysis. The conceptual data model presents the structure of
data, constraints and relationships in a high-level graphical notation, indepen-
dent of the physical storage structures and independent of the particularities
of the target DBMS. Popular notations for a conceptual model are the Entity
Relationship model [Che76]) and the Unified Modelling Language [Obj02].

The next step is to choose a specific DBMS and derive a logical schema from
the conceptual model using a well-defined set of various transformation rules.
Entities are mapped to relations, primary and foreign keys are identified and re-
lationships between data are dissolved. When making decisions between different
mapping possibilities the designer must take into account the characteristics of
the DBMS as well as prospective data volumes and transaction profiles. For rela-
tional DBMS this process is well understood and topic of several textbooks. Well
established design procedures guide the designer to a good logical schema. For
object-relational DBMS such design procedures are not yet proposed. This paper

derntl
Text Box
© Springer Verlag 2004, http://www.springer.de/comp/lncs/index.html

Eder J. & Kanzian S. (2004). Logical Design of Generalizations in Object-relational Databases. 8th East European Conference - Advances in Databases and Information Systems (ADBIS 2004), Budapest, Hungary, LCNS3255

personalNr

name

birthdate

person

salary

department

clerk

accountno

balance

customer

Figure 1. UML example model

is a step towards such design recommendations. Object-relational databases of-
fer a much more complex data model including generalization/inheritance, user
defined types, complex types, etc. The decision space for the designer increased
tremendously because of the increased complexity of the data models. The im-
plications of design choices on the performance of the target information systems
are great but not yet well understood.

In this paper we aim at contributing to the development of a design process
supporting the designer in making the decisions for mapping a conceptual schema
into a logical schema of an object-relational DBMS. We focus on a specific aspect:
how to map generalizations of UML diagrams to the object-relational schema. We
describe the various alternatives and investigate the performance implications
of the different choices through a series of benchmarks.

2 Mapping alternatives for generalization

In this section we discuss the various ways for mapping a generalization to an
object-relational data model. Our running example is given in figure 1. The figure
shows a sample for specialization/generalization based on the personnel structure
of a bank. The superclass is a general person, with a personal number, a name
and a birthdate. We have two specializations: a customer with the attributes
account and balance and a clerk with the attributes salary and department.

There are seven different possibilities for mapping a generalization to rela-
tions. Most of them are similar to relational solutions except those using inheri-
tance offered by the DBMS. A generalization can be disjoint or overlapping and
total or partial. We will show 4 samples, one for each kind of generalization.
Alternative I - Subclasses referencing Superclass: A complex datatype is
defined for the superclass consisting of the superclasses’ attributes and a typed

person

customer

personno
 name
 address
 age

Jones
25

Main Street 46,

11010 New York

34

30
 Smith

Flower Drive 5,

05670 South Barre

25

reference_

personno

accountno
 balance

18880000005

00004B030A00477

1356F922B7141

4.500,--

00004C569B00479

9356C302B72300

24540000033
 6.300,--

Gold
35

Route 202,

04330 Augusta

28

40
 Miller

Tree Avenue 3,

83301 Twin Falls

37

clerk

reference_

personno

salary
 department

900,--

00004B030A00477

1356F922B7141

EDP

000023DA9B0LI32

93530D02BSE00

1.300,--
 Management

Figure 2. Mapping Generalization using Alternative I

table is created based on the datatype. The key attribute of the superclass is
the primary key. More datatypes and typed tables are defined likewise for each
subclass. Each subclass-datatype contains an additional attribute for referencing
the superclass. Alternative I is shown in figure 2.
Alternative II - Subclasses containing complex datatype of Superclass:

A complex datatype is defined for the superclass’ attributes. A table is created for
each subclass containing the specialization attributes of the subclasses and one
attribute defined on the superclass datatype (figure 3). Alternative II can’t be
used for partial generalizations. Entries of the superclass without correspond-
ing entries in a subclass are lost, because there is no table where they fit in.
With an overlapping generalization the attributes of the superclass are stored
redundantly, complicating maintaining data consistency. Therefore, alternative
II should not be used if the superclass has many and/or volatile attributes.
Alternative III - Single Relationship containing complex datatypes of

Super-/Subclass with distinction attribute: A complex datatype is defined
for the superclass’ attributes as well as for the attributes of each subclass. One
table is created whose attributes are defined on the complex datatypes. One
additional attribute is needed in order to assign a data record to one of the
subclasses. The result is shown in figure 4. Alternative III can only be used for
disjoint generalization because the distinction attribute is single value. When
many subclasses with many attributes are given, there will be many empty at-
tributes in the table, because a data record can only be assigned to one subclass.

customer

clerk

person

accountno
 balance

personal

no

name
 address
 age

25

30

Jones

Smith

18880000005

24540000033

4.500,--

6.300,--

Main Street 46,

11010 New York

Flower Drive 5,

05670 South Barre

34

25

person

salary
 department

personal

no

name
 address
 age

25

35

Jones

Gold

900,--

1.300,--

EDP

Management

Main Street 46,

11010 New York

Route 202,

04330 Augusta

34

28

Figure 3. Mapping Generalization using Alternative II

person
 customer
 clerk

subclass_

type
personal

no

name
 age
address
 accountno
 balance
 salary
 department

Smith
30

Gold
35

24540000033

Flower Drive 5,

05670 South Barre

Route 202,

04330 Augusta

6.300,--
25

28
 1.300,--
 Management
 CL

CU

Miller
40

Tree Avenue 3,

83301 Twin Falls

37
 NULL

Figure 4. Mapping Generalization using Alternative III

Both partial and total generalization are supported. When a data record is as-
signed to the superclass only, the distinction attribute is empty.

Alternative IV - Single Relationship containing complex datatypes

of Super-/Subclass with boolean distinction attributes: This alternative
is similar to alternative III. The difference is the definition of the distinction at-
tribute: a complex datatype is defined with one boolean attribute representing
each subclass. This datatype is assigned to the distinction attribute. The value
”TRUE” must be given to every boolean attribute which represents a subclass
the data record belongs to. This principle is shown in figure 5. It is possible to
resolve overlapping generalizations in alternative IV, using all of the attributes
of the complex distinction column. Partial generalization is valid too: the value
”FALSE” is assigned to the boolean attributes for every subclass. Alternative
IV is best qualified for total, overlapping generalizations. Partial and disjoint
generalization is possible, but results in a table containing many NULL-Values.
Alternative V - Single Relationship containing complex datatypes of

Super-/Subclass with multivalue distinction attribute: The relation of
alternative V looks very much like alternative IV, except for the definition of the

person
 customer
 clerk

subclass_

type

person

no

name
 age
address
 accountno
 balance
 salary
 department

25
 Jones

Main Street 46,

11010 New York

34
 18880000005
 4.500,--
 900,--
 EDP

CU
 CL

1
 1

30
 Smith

Flower Drive 5,

05670 South Barre

25
 24540000033
 6.300,--
 1
 0

35
 Gold

Route 202,

04330 Augusta

28
 1.300,--
 Management
 0
 1

40
 Miller

Tree Avenue 3,

83301 Twin Falls

37
 0
 0

Figure 5. Mapping Generalization using Alternative IV

distinction attribute. Alternative V has a single multivalue distinction attribute.
One value is assigned to the distinction attribute for each subclass the record
belongs to. The resulting table is shown in figure 6. When selecting data all
values of the distinction attribute must be checked to find out if the data record
belongs to a specific subclass. Partial, total, overlapping and disjoint general-
ization is possible, but partial and overlapping generalization should be avoided
due to the great number of NULL-values.
Alternative VI - Inheritance offered by DBMS: Alternative VI uses the
inheritance enhancements offered by the DBMS. A complex datatype is defined
for the superclass. For every subclass a subordinate complex datatype to the
superclass is defined. Every attribute, method and function is inherited from
the supertype to the subtype. Typed tables are defined on the various complex
types. The resulting hierarchy is shown in figure 7. The resulting tables corre-
spond to the relations shown in figure 3, with one additional typed table, defined
on the complex type of the superclass. The difference between alternative II and
alternative VI is the point in time at which inheritance takes place. With al-
ternative II, the attributes of the superclass are assigned to the subclass table
when the column based on the complex datatype of the superclass is created. In
alternative VI the superclass attributes are already inherited by the DBMS at
the definition of the subordinate complex datatype, before creating any table.
Total, partial, overlapping and disjoint generalizations are supported. A partial
generalization has no entries in the typed tables of the subclass, as well as a
total generalization has no entries in the superclass table.

Alternative VII - Inheritance offered by DBMS with not-instantiable

root type: Alternative VII is the same as alternative VI, but the complex type
of the superclass is created as ”not instantiable” meaning that no typed table
can be defined on it. The subordinate datatypes still inherit all attributes and

person

subclass

_set
person

no

name
 age
address

25
 34
 CU, CL

30
 25
 CU

35
 28
 CL

40
 37
 NULL

Main Street 46,

11010 New York

Flower Drive 5,

05670 South Barre

Route 202,

04330 Augusta

Tree Avenue 3,

83301 Twin Falls

Jones

Smith

Gold

Miller

customer
 clerk

accountno
 balance
 salary
 department

18880000005
 4.500,--
 900,--
 EDP

24540000033
 6.300,--

1.300,--
 Management

Figure 6. Mapping Generalization using Alternative V

person

clerk

personno
 name
 address
 age

accountno
 balance
 salary
 department

customer

Figure 7. Mapping Generalization using Alternative VI

methods from the not-instantiable supertype. The resulting tables are the same
as in alternative VI, without the typed table for the superclass. Partial gen-
eralization is not supported, because a data record which doesn’t belong to a
subclass doesn’t fit into one of the defined tables.
These seven alternatives can be used on every object-relational DBMS provided
that it offers complex datatypes, multivalued attributes and structural inheri-
tance. In a relational system there are only four alternatives for mapping gener-
alization. The designer has to decide which alternative to choose. The choice is
somewhat limited by the above mentioned characteristics of the generalization.

If there are still alternatives left after classifying the generalization, the trans-
action profile and datavolume tables are consulted. Unfortunately, this often
doesn’t narrow the selection of alternatives, because it’s difficult to rate a logical
access to a table with object-relational enhancements. The actual physical struc-
ture is different for every DBMS and it cannot be assumed that logical writes
and reads are a suitable approximate value for their object-relational physical
counterparts. A performance test can help to make the final decision. The next
section shows the results of a performance test, made for the different alterna-
tives on the DBMS Oracle 9.2.0.
Oracle offers one additional alternative (alternative VIII). Like alternative VI
a type hierarchy of complex datatypes is build. But only one typed table, de-

fined on the superclass type, is neccessary. Data records belonging to a subclass
type can be inserted into this table using the corresponding type constructor.
Selections must state the datatype of the result set. The DBMS offers the two
functions ”VALUE” and ”TREAT” which are used for this purpose.

3 Benchmarks

The eight possibilities offered by Oracle are now investigated with regard to
their costs and relative runtimes. The experiments were made with the following
conditions: we were only interested in the relative performance of the different
variants, so we do not show absolute values. We did not tune the system for
improving the different variants but used the general settings, and we did not
elaborate on the physical level. To decide which of the several alternatives is
suitable for a specific problem we made a small performance test. The system
was a PC with an Athlon XP 1800+ processor, 256 MB RAM with Windows
2000. The DBMS was the Oracle 9.2.0 standard installation without any physical
tuning measures. From a fictive transaction profile we chose six transactions,
which we run against the database:

– T1: selects data from the superclass and exactly one subclass, e.g. name,
account number and balance of a customer

– T2: selects data from the superclass and both subclasses (only possible for
overlapping generalization), e.g. name, balance, salary and department of
clerks, that also have an account

– T3: selects data from the superclass only, e.g. customers older than 30 years

– T4: selects data with an aggregate function, e.g. average balance

– T5: adds a new customer (who is no clerk)

– T6: modifies an existing customer (who is no clerk)

We compared costs and relative runtimes of the reading transactions T1
to T4 and the writing transactions T5 and T6 separately. The tests were made
with different datavolumes, beginning with 40.000 persons. 10.000 are customers,
10.000 are clerks, 10.000 are both customers and clerks and 10.000 are neither
customer nor clerk. This scheme was repeated four times, adding 40.000 persons
each time until we reached 160.000 persons.

exactly one subclass

connected with the superclass

several subclasses connected

with the superclass
 superclass alone
 query with aggregate function

few

datarecords

many

datarecords

few

datarecords

many

datarecords

few

datarecords

many

datarecords

few

datarecords

many

datarecords

minimal cost

minimal

runtime

alternative I,

IV, V and VI

VI
 VI

I
 VI

IV, VI
 IV, VI

I
 I

I, IV
 I, IV

I
 I

I
 I

I
 I

Figure 8. Results of alternatives I, IV, V and VI with regard to minimal cost and

runtime

3.1 Alternative I, IV, V and VI

The first comparison was made for overlapping, disjoint, partial and total gener-
alization, which leaves the alternatives I, IV, V and VI to investigate. For every
transaction we measured the costs of the access plan and the runtime in seconds.
Alternative I was realised in Oracle with object tables and references. Alterna-
tive IV used a single relation with a complex datatype as distinction attribute.
Alternative V was implemented with a VARRAY as distinction attribute. Alter-
native VI uses the structual inheritance offered by Oracle. The queries T1, T2,
T3 and T4 where run against the different relations. An overview of the results,
which can be used as a help for choosing the best alternative, is shown in figure
8. For details about cost and runtime, check figure 11 in the appendix.

T1 - Superclass and exactly one subclass Transaction T1 was the first
to be measured. Whichever metric is more important, minimal cost or minimal
runtime, another alternative has better values. For minimal costs, alternative VI
has to be chosen, regardless of the amount of data. With a large quantity of data
records it also has the best runtimes. However, alternative I has significant better
runtimes for small data sets, but it also requires the highest cost. Alternative
IV is the middle for both cost and runtime. The costs of alternative V where
extremly high due to accessing the VARRAY and it also had the worst runtimes.

T2 - Superclass and serveral subclasses The same applied to transaction
T2. The costs of alternative V were about 300 times higher than the costs of the
other alternatives, the runtimes where average. Alternative IV and VI needed
the same costs. Alternative I started with low costs for few data records but
the costs exploded with the number of records. Therefore alternative IV or VI
should be chosen for minimal costs. For minimal runtime, alternative I is best

exactly one subclass

connected with the superclass

several subclasses connected

with the superclass
 superclass alone
 query with aggregate function

few

datarecords

many

datarecords

few

datarecords

many

datarecords

few

datarecords

many

datarecords

few

datarecords

many

datarecords

minimal cost

minimal

runtime

alternative II

and VII

II
 II

II, VII
 II, VII

II
 II

II, VII
 VII

II
 II

VII
 VII

II
 II

II, VII
 II, VII

Figure 9. Results of alternatives II and VII with regard to minimal cost and runtime

suited, especially when dealing with small amounts of data, needing about half
the time of the other alternatives.

T3 - Superclass only For transaction T3 the decision is a hard one when
considering minimal costs. The cost of alternative I and IV are nearly the same
whereas alternative VI needs significant higher costs especially for large data
sets. Suprisingly the costs of alternative V are average for T3 and they stay
constant regardless of the amount of data. Considering runtimes, alternative I
and VI need about half the time of alternative IV and V for small data sets. For
large relations alternative I has the best runtimes combined with very low costs.
T4 - Transaction with aggregate function Transactions with an aggregate
function favour alternative I, with both minimal costs and runtimes. The costs
for alternative V remain constant regardless of the amount of data, but are very
high from the beginning. Alternative IV and VI need average costs. Runtimes
of alternative V are slightly worse compared with alternative I. The runtimes
of alternative IV and VI are much worse and they are highly influenced by the
number of data sets. The performance tests showed, that for minimal runtimes
alternative I is mostly the right choice, except when using transactions, which
select from the superclass combined with exactly one subclass, on large data sets.
In this case alternative IV should be used. If it’s most important to minimize
costs, alternative IV should be favoured for different transaction categories.

3.2 Alternative II and VII

If partial generalization is prohibited the choice should be made with alternative
II and alternative VII. Alternatives I, IV, V and VI can also be used. In this
case the application is responsible to prohibit partial generalization. The queries
of T1, T2, T3 and T4 were run against the alternatives. Detailed information
regarding cost and relative runtimes are shown in figure 12 in the appendix.

T1 - Superclass and exactly one subclass For T1, accessing the super-
class and exactly one subclass, the alternatives II, VI and VII nearly have the
same costs, with a linear cost trend. It begins with low costs for a small amount
of data and rises continually with the number of records. For minimal runtime
alternative I has the best value for small datasets. For large datasets the runtime
of alternative II, IV, VI and VII is the same.

T2 - Superclass and serveral subclasses Queries like T2 have higher
costs for all alternatives, due to the additional joins that must be made. Alter-
native I has the lowest costs for small datasets, but the highest one for large
datasets. Alternative V has immense costs and is therefore not recommended.
The remaining alternatives basically all need the same cost with minimal differ-
ence. Considering minimal runtimes, alternative I is the best in all cases.

T3 - Superclass only For transactions, that access the superclass only,
alternatives I and IV provide minimal costs regardless of the amount of data.
For minimal runtimes alternative VII should be chosen for small datasets, for
large datasets alternative I has best runtimes.

T4 - Transaction with aggregate function The results are somewhat
different for transactions using an aggregate function (T4). The costs rise linear
depending on the amount of data for all alternatives, but alternative I needs
the lowest costs of all. Regarding minimal runtimes alternative I or II should be
chosen for small datasets, for large datasets alternative I or V is recommended,
but it should be considered that alternative V needs extremely high costs.

The analysis shows a similar cost and runtime behaviour for alternatives II
and VII, which is not very suprising. The structure of the tables of both alterna-
tives is identical, but the tables are constructed using different object-relational
facilities, which explains the similar cost and runtimes. In many cases the al-
ternatives II and VII only have average results. For minimal costs the choices
vary depending on the kind of transaction, for minimal runtimes alternative I is
always recommended, except for transaction T1 with large datasets.

3.3 Alternative III and VIII

Alternative III and VIII do not support overlapping generalizations. Therefore
only transactions that access the superclass and exactly one subclass or the su-
perclass alone and transactions with an aggregrate function where investigated.
Alternative III is a single relation containing the super- and subclass attributes

exactly one subclass

connected with the superclass

superclass alone
 query with aggregate function

few

datarecords

many

datarecords

few

datarecords

many

datarecords

few

datarecords

many

datarecords

minimal cost

minimal

runtime

alternative III

and VIII

III
 III

III
 III

III
 III

VIII
 VIII

III
 III

III, VIII
 III, VIII

Figure 10. Results of alternatives III and VIII with regard to minimal cost and runtime

as complex datatype. Alternative VIII makes use of the possiblity offered by
Oracle to insert records of a subtype into a table defined on the supertype. The
alternatives I, IV, V and VI can also be used, in this case the application is
responsible for forbidding overlapping generalization. An overview of the bench-
mark results is shown in figure 10. For detailed graphical representation of the
cost behaviour and for a table with relative runtimes, refer to figure 13.

T1 - Superclass and exactly one subclass For queries accessing the
superclass and exactly one subclass the cost trend is linearly rising with the
amount of data for all alternatives. For small datasets the costs are nearly the
same for all alternatives, for large amounts of data alternative VI should be
chosen. Alternative III clearly has the best runtimes regardless to the amount of
data, followed by alternative VIII. It should be taken into account that queries
for alternative VIII are complex to write and difficult to read, due to the use of
the functions VALUE and TREAT.

T3 - Superclass only Transactions that select data only from the superclass
also have a linear cost trend depending on the amount of data. Alternatives III
and VIII provide minimal costs. For small datasets alternative VIII also has
the best runtimes, whereas for large amounts of data alternative I minimizes
runtimes.

T4 - Transaction with aggregate function For transactions with aggre-
gate functions alternative I should be clearly favoured with regard to minimal
costs. For small datasets alternative I and III have minimal runtimes and for
large datasets alternatives I and V.

T5, T6 - Inserting and Updating If data creation and modification are
the most frequent transactions, their cost and runtimes should be considered
for deciding between various alternatives. The runtimes are so insignificant, that
they are not further considered.

If the data is frequently modified alternative I should never be chosen. The
costs are much higher compared to the other alternatives. The same is valid if a
data record is created, only alternative V has similar high costs, due to accessing
the VARRAY. The bad results of alternative I are explained by the way a data
record is created. First, an entry is created in the superclass table. After that the
OID of the new record must be selected and transformed into a reference, before
the corresponding subclass-entry can be created. When updating a record, the
reference between subclass and superclass has to be resolved in order to find the
correct subclass-entry, so both inserting and modifying are timeconsuming and
expensive operations when using alternative I. Alternative I had good results for
querying data, but if data is frequently changed, alternative VI should be chosen
for minimal costs.

Alternative II or VII are valid, if partial generalization is not allowed, but
the alternatives I, IV, V and VI can also be used. Alternatives II, VI and VII
have the best costs for inserting data. For Updating the costs for all alternatives
are minimal, except for alternative I which has been explained before.

For disjoint generalization, alternative III and VIII are suitable, but the
alternatives I, IV, V and VI can also be used. Just like before the costs for
updating data are the same for all alternatives, except for alternative I. For
inserting alternative VI is best suited, followed by alternative III and VIII.

4 Conclusions

We reported on an experimental analysis of design choices for mapping gener-
alization to the logical schema of an object-relational database with the aim to
assist database designers in achieving logical data models with good performance
characteristics.

We provided a set of rough recommendations for a specific database man-
agement system but in particular we showed that the differences between logical
designs are surprisingly high and that the transaction and data volume profile is
very important for designing an object-relational database. Different transaction
categories require different alternatives for optimal results with regard to costs
and runtime. Specific benchmarks are often necessary to avoid poor performance.
There will not be an easy set of rules for logical design as for relational models.

From these experiments and another set of experiments on a different database
management system we can conclude the following more general results:

– The performance differences of the different choices are great - sometimes in
orders of magnitude.

– The performance champions change considerably with the size of relations.
– There are great differences in the performance of the same mapping alter-

natives in different DBMS.
– Mapping alternatives perform quite differently for different types of queries.

Logical design for object-relational databases is much more complex than for re-
lational databases. Differences between DBMS and the actual transaction profile
and data volumes have a greater effect on performance. Detailed performance
analysis will be needed for logical design to reach high performance.

References

[CD96] M. J. Carey and D. J. DeWitt. Of Objects and Databases: A Decade of

Turmoil. In Proceedings of the 22nd VLDB Conference, 1996.

[Che76] P. Chen. The Entity-Relationship Model - Toward a Unified View of Data.

In ACM Transactions on Database Systems, June 1976.

[DD95] H. Darwen and C.J. Date. The third manifesto. ACM SIGMOD Record,

24(1):39–49, March 1995.

[Dev01] R. S. Devarakonda. Object-Relational Database Systems - The Road ahead.

Crossroads, 7(3):15–18, 2001.

[Mir97] S. Miranda. Object Relational Datamodels of the Future. In 3rd Basque

International Workshop on Information Technology (BIWIT ’97), 1997.

[MP01] W. Y. Mok and D. P.Paper. On Transformations from UML Models to Object-

Relational Databases. In Proc. of the 34th HICSS, 2001.

[MS00] W. Mahnke and H.-P. Steiert. Zum Einsatzpotential von ORDBMS in En-

twurfsumgebungen. In Tagungsband der Fachtagung CAD 2000, 2000.

[Obj02] Object Management Group - OMG. The UML Ressource Page. 2002.

[SBM99] M. Stonebraker, P. Brown, and D. Moore. Object-relational DBMSs - Track-

ing the Next Great Wave. Morgan Kaufmann, 1999.

[Sch00] C. Schahczenski. Object-oriented databases in our curricula. The Journal of

Computing in Small Colleges, 16(1), 2000.

[Sto97] M. Stonebraker. Architectural Options for Object-Relational DBMS. In-

formix Software, CA, 1997.

[ZR00] W. Zahng and N. Ritter. Measuring the Contributions of (O)RDBMS to

Object-Oriented Software Development. In 2000 Int. Database Engineering

and Applications Symposium (IDEAS’00), 2000.

[ZR01] W. Zahng and N. Ritter. The Real Benefits of Object-Relational DB-

Technology for Object-Oriented Software Development. In Proc. 18th British

National Conference on Databases (BNCOD 2001), 2001.

A Detailed Information about Cost and relative

Runtimes

V

3,09

9,05

16,03

19,06

VI

2,09

3,04

5,05

8,07

IV
I

40.000

80.000

120.000

160.000

1

2,06

5,06

14,03

3,01

3,05

7,0

8,08

runtime

records

T1

155

255

623

104

164

219

116

75

55
 61

92

31

0

100

200

300

400

500

600

700

C
o

s
t

 I
 IV
 VI

T2

107

375

987

219

232

219
 219
219

236

244
 256

275

0

200

400

600

800

1000

1200

 I
 IV
 VI

IV
I

40.000

80.000

120.000

160.000

1

2,3

3,62

6,24

2,95

4,26

6,56

7,52

runtime

records
 V

1,96

2,97

5,90

7,54

VI

3,27

4,25

5,56

7,22

T3

195

243
 243
 243
 243

506

777

1019

49

92
 146
55

104

164

219

265

0

200

400

600

800

1000

1200

K
o

s
te

n

 I
 IV
 V
 VI

IV
I

40.000

80.000

120.000

160.000

1

2,67

3,10

4,19

2,05

5,38

6,14

10,05

runtime

records
 V

2,10

4,14

6,19

8,29

VI

1,05

2,76

2,48

16,62

T4

19

37

49

74

55

104

164

219

243
 243
 243
 243

31

61

92

116

0

50

100

150

200

250

300

c
o

s
t

 I
 IV
 V
 VI

IV
I

40.000

80.000

120.000

160.000

0

0

1

1,67

0,67

1,33

201

168,3

runtime

records
 V

2,67

1,67

1,33

1,67

VI

0,67

1,33

100,3

102,7

Figure 11. Cost and relative runtime for I, IV, V and VI

VII
II

40.000

80.000

120.000

160.000

1

1

1,66

2,64

0,68

1

1,66

2,65

runtime

records

T2

245

227

214
206

275
257

244

236

0

50

100

150

200

250

300

c
o

s
t

 II
 VII

VII
II

40.000

80.000

120.000

160.000

1

1,3

2,01

2,6

1,01

1,31

1,7

2,21

runtime

records

T3

181

358

547

724

193

376

570

755

0

100

200

300

400

500

600

700

800

c
o

s
t

 II
 VII

VII
II

40.000

80.000

120.000

160.000

1

2,67

3,28

5,27

0,53

1,33

1,81

5,32

runtime

records

T1

25

49

79

104

31

61

92

116

0

20

40

60

80

100

120

140

c
o

s
t

 II
 VII

T4

25

49

79

104

31

61

92

116

0

20

40

60

80

100

120

140

c
o

s
t

 II
 VII

VII
II

40.000

80.000

120.000

160.000

0

1

100

103

1

1,5

104

102,5

runtime

records

Figure 12. Cost and relative runtime for II and VII

VIII
III

40.000

80.000

120.000

160.000

1

2,5

200,5

300,5

50,5

52

203,5

401

runtime

records

T1

74

116

158

37

170

128

79

43

0

20

40

60

80

100

120

140

160

180

c
o

s
t

 III
 VIII

T3

37

74

116

158

170

128

79

43

0

20

40

60

80

100

120

140

160

180

c
o

s
t

 III
 VIII

VIII
III

40.000

80.000

120.000

160.000

1

2,5

200,5

300,5

50,5

52

203,5

401

runtime

records

T4

37

74

116

158

170

128

79

43

0

20

40

60

80

100

120

140

160

180

c
o

s
t

 III
 VIII

VIII
III

40.000

80.000

120.000

160.000

1

3

403

505

2

3

403

502

runtime

records

Figure 13. Cost and relative runtime for III and VIII

