
Designing and Implementing an Object–Relational Data
Warehousing System

Bodgan Czejdo1, Johann Eder2, Tadeusz Morzy3, Robert Wrembel3

1 Department of Mathematics and Computer Science, Loyola University
St. Charles Ave., New Orleans, LA 70118

czejdo@loyno.edu
2 Institut für Informatik–Systeme, Universität Klagenfurt

Universitätsstr. 65, A-9020 Klagenfurt, Austria
eder@ifi.uni-klu.ac.at

3 Institute of Computing Science, Poznań University of Technology
Piotrowo 3A, 60-965 Poznań, Poland

morzy@put.poznan.pl, Robert.Wrembel@cs.put.poznan.pl

Abstract
In this paper we present some of the results achieved while realizing an international research project
aiming at the design and development of an Object–Relational Data Warehousing System (ORDAWA).
Important goals of the project are to develop techniques for the integration and consolidation of different
external data sources in an object–relational data warehouse, the construction and maintenance of
materialized relational as well as object–oriented views, index structures, query transformations and
optimizations, and techniques of data mining. The achievements discussed in this paper concern the
application of materialized object–oriented views in the process of building an object–relational data
warehouse.

Keywords: object–relational data warehouse, operational data store, object–oriented view, view schema,
view materialization, maintenance of a materialized view.

1. Introduction
Organizational decision support systems require a comprehensive view of all aspects of an enterprise.

Information collected in an enterprise are often of different data format and complexity (e.g. relational,
object–relational, and object–oriented databases, on-line multimedia data stores, Web pages, spreadsheets,
flat files etc.). Therefore, one of the important issues is to provide an integrated access to all these
heterogeneous data sources.

There are two basic approaches to data integration: the mediated approach and the data warehousing
approach [1]. In the first one, a global query is decomposed and transformed into queries for each of the data
sources. The results of each of the queries are then translated, filtered, and merged to form a global result.

Whereas in the data warehousing approach, data of interests coming from heterogeneous sources are
extracted, filtered, merged, and stored in an integrating database, called data warehouse. The data are also
enriched by historical and summary information. Then, queries are issued for this data warehouse.

The advantages of the data warehousing approach to data integration are as follows: (1) queries
operate on a local centralized data repository, that reduces access time to data, (2) queries need not be
decomposed into different formats and their results need not be integrated, (3) a data warehouse is
independent of other data sources, that may be temporary unavailable. However, a data warehouse has to be
kept up to date with respect to source data, by periodically refreshing it. A data warehouse is often
implemented as the set of materialised views.

This paper describes some of the results achieved while realizing an international research project
aiming at the design and development of an Object–Relational Data Warehousing System – ORDAWA [2].
The project is conducted in co–operation of the Institute for Informatics–Systems at Klagenfurt University,
the Institute of Computing Science at Poznań University of Technology, and the Department of Mathematics
and Computer Science at Loyola University. Important goals of the project are to develop techniques for the

katja
published in: Proceedings of 3rd IFIP WG 6.1 International Working Conference on Distributed Applications and Interoperable Systems - DAIS`01, Vol. 198, ISBN 0-7923-7481-9, pp 311-316

integration and consolidation of different external data sources in an object/relational data warehouse, the
construction and maintenance of materialized relational as well as object–oriented views, index structures,
query transformations and optimizations, and techniques of data mining. The achievements discussed in
this paper concern the application of materialized object–oriented views in the process of building
an object–relational data warehouse.

2. Object–Relational Data Warehouse
The more and more frequent need to create, store, and manage data of a complex structure and

behaviour leads to the make use of object–relational (e.g. Oracle8, Extended Parallel Server, IBM DB2
UDB) or object–oriented databases (e.g. Objectivity/DB, ObjectStore, Versant). These complex data,
similarly as relational, will be the subject of the integration and analysis in a central repository – a data
warehouse. To this end, the data model of such a data warehouse should support complex types in order to
reflect the complexity of source information. Moreover, object data use the methods and these methods
should also be available in the integrated system, in order to retain the functionality and information as well
as to be able to process the information. Therefore, many research papers suggest to use an object–relational
or object–oriented data model (cf. [3, 4]) as a common model for integrating heterogeneous data sources.

Our object–relational data warehousing architecture is presented in Figure 1. An intermediate layer,
called an operational data store (ODS) is built between data sources and a data warehouse [5, 6]. An
operational data store is a subject–oriented set of data coming from one or more data sources. While loading
an ODS, data are extracted from data sources, transformed to a common data model of an ODS, and
preintegrated. Then, the content of various operational data stores is again integrated and loaded into a
central data warehouse.

The main differences between a data warehouse and an operational data store are as follows. Firstly,
the content of an ODS changes more frequently than the content of a data warehouse. Secondly, data in an
ODS are near current with respect to the corresponding data in data sources. Next, data in an ODS can be
updated but the updates do not propagate down to data sources. And finally, the aggregation level of data in
an ODS is very low.

The purpose to build an ODS is to separate long lasting, time consuming processing, e.g. On–Line
Analytical Processing queries, from data sources. Since OLAP queries operate on data in an ODS, they do
not interfere with the processing in data sources. Furthermore, an ODS may be designed and tuned
especially for a particular pattern of processing, whereas the underlying data sources may be designed and
tuned for other kind of processing, e.g. OLTP. For the reason of tuning one may need to change the structure
of source data in an ODS, e.g. merge some source information, project some attributes, introduce data
redundancies.

From the implementation point of view, an ODS is seen as the set of materialised object–oriented
views.

DS1

data warehouse

integrator

data sourcesDS2 DS3 DS4 DS5

extraction
transformation
pre-integrationobject-oriented

views
OV1 OV2 OV3

wrapper/monitor wrapper/monitor wrapper/monitor

Figure 1. The application of object–oriented views in a data warehouse architecture

While materialising an object–oriented view one has to consider the materialisation of structure as
well as the materialisation of methods. The materialisation of methods is important firstly because this
technique allows to increase performance of methods whose computation take long time. Secondly, by
materialising methods one is able to transform behaviour of objects to relational model. In this case
materialised methods are just seen as attributes having persistent values. However, not all methods are good
candidates for the materialisation. For example, method comparing or looking for similarities between two
pieces of information can not be easily materialised. For these reasons, a data warehousing system has to
provide means for the materialisation of methods as well as for invoking and computing methods when
needed, i.e. should be able to maintain the behaviour that is not easy to materialise.

To sum up, by using object–oriented views for modelling and implementing operational data stores
we achieved the following goals: (1) we are able to extend data warehousing process to be applicable also to
object–oriented data sources; (2) due to the expressiveness of an object–oriented data model we are able to
transform one data model to another and this transformation may be supported by methods defined in a
view; moreover, the restructuring of source data in an operational data store can be easier.

3. The Concept of an Object–Oriented View
In our approach, called View Schema Approach (VSA), we draw on the model of an object–oriented

database, presented in [7], which we extended by the following concepts supporting object–oriented views,
their materialization and maintenance: (1) view class, (2) view object, (3) view schema, (4) mappings
between database schema and views, and (5) mappings between objects in a database and those in views.

An object–oriented view is defined as a view schema of an arbitrary complex structure and behavior
[8]. A view schema is composed of view classes. Each view class is derived from one or more base classes,
i.e. classes in a database schema. A view class is derived by an OQL–like command. View classes in a view
schema are connected by inheritance and aggregation relationships. Several view schemas can be created
from the same base schema.

A given view schema can be explicitly materialised. The materialisation of a view schema results in
the materialisation of its view classes. When materialising the instances of a given view class it is possible
to materialised the structure of objects and results of some methods applicable to view objects.

After objects have been materialised in a view, the maintenance of consistency between base objects
and those materialised in a view becomes an important issue. In our approach we have developed three
following techniques for propagating modifications from source objects to their materialised counterparts in
a view schema: (1) deferred on commit incremental refreshing, (2) deferred on demand incremental
refreshing, and (3) deferred on demand complete refreshing. Only certain view classes are allowed to be
refreshed incrementally.

In order to incrementally propagate the modifications from base to view objects we have developed
additional data structures, called Class Mapping Structure, Object Mapping Structure, and Log. The first
two structures represent mappings between base and view classes as well as between their instances, cf. [8].
Whereas Log stores records describing operations performed on base objects, cf. [9].

4. The View Schema Approach Prototype
The theoretical foundation concerning a materialised object–oriented view have been incorporated

into a prototype software, called the View Schema Approach Prototype (VSAP).
The functionality that has been implemented and is supported by the View Schema Approach

Prototype is the following: (1) the creation and management of several view schemas, (2) the creation and
management of view classes in a given view schema, (3) the materialisation of view schemas and the
maintenance of their consistency, (4) checking the consistency of a view schema with regard to structural
and behavioural closure criteria, cf. [10].

The View Schema Approach Prototype is composed of two parts: the client part and the database part.
The client part is composed of the four following software packages, namely: user interface, VSA manager,
command analyser, and Pro*C interface. Whereas the database part is composed of one software package.
Data and some procedures and functions are stored in the Oracle8i database.

Figure 2. The user interface window of VSAP

The user interface package is implemented in C/C++. It contains the set of classes implementing the
window interface used for managing view schemas. Users execute their commands and inspect the content
of a view database in this interface. VSA manager is responsible for executing user commands and gathering
their results as well as for refreshing view schemas when a transaction commits. In order to perform these
tasks, the VSA manager uses command analyser, Pro*C interface, and database interface. Command
analyser is responsible for analysing commands issued via console, checking their syntax, translating into
the SQL language, and sending to a database for execution. Pro*C interface is used for the communication
with a database, passing SQL commands to a database for execution, invoking procedures and functions
stored in a database, and receiving data from a database.

The database interface consists of various procedures, functions and packages stored in a database.
They are implemented in the Oracle PL/SQL language, often using dynamic SQL. Additionally, this
software package contains the VSA data dictionary used for storing information about view schemas and
their components.

The user interface window is shown in Figure 2. The main window is composed of four panels. The
upper left hand panel, called object navigator, displays base classes (node BASES) and view schemas (node
VIEWS). Both nodes can be expanded or collapsed. Each node under VIEWS represents a view schema, e.g.
VS_Computers. Expanding a view schema node makes its view classes visible. The upper right hand panel
displays the definition of a view class which is selected in object navigator. In an example window shown in
Figure 2 the definition of the V_RAM view class is displayed in this panel. The lower left hand panel shows
the derivation information about a view class and its base classes. The lower right hand panel exists in the
first version of VSAP for testing reasons. It shows the instances of the view class that is selected in object
navigator.

4. Summary
The application of object–oriented views in the process of building an object–relational data

warehouse system is very promising. Object–oriented views are important mechanisms providing an
integrated access to data of various structures. It is due to the following facts:

• object–oriented features, especially methods, may facilitate data transformation, integration, and
analysis in an object–relational data warehouse;

• the high expressiveness of an object–oriented data model makes object–oriented views suitable for the
transformation and integration of many different data sources that use various data models.
Several approaches to object–oriented views were proposed in scientific publications (see [11, 12] for

an overview). But they provide a limited functionality for the application in the process of data warehousing.
Our View Schema Approach is more general and it encompasses other approaches. Moreover VSA allows to
materialize a view schema and maintain its consistency by using one of the three maintenance techniques.
VSA has been implemented as a prototype.

Further research within the ORDAWA project will focus on: query transformation and optimization
techniques in data warehousing environment, techniques and algorithms for data mining in data warehousing
environment, the maintenance of summary data for periodically changing dimension data as well as the
maintenance of a data warehouse schema and data in the presence of changes made to the schemas of source
databases [13].

References

[1] Widom J.: Research Problems in Data Warehousing, Proc. of the 4th Int. Conference on Information and
Knowledge Management (CIKM), 1995, pp. 25-30

[2] J.Eder, H.Frank, T.Morzy, R.Wrembel, M.Zakrzewicz, Designing an Object-Relational Database System: Project ORDAWA.
Proc. of challenges of the Enlarged 4th East-European Conference on Advances in Databases and Information Systems
ADBIS-DASFAA 2000, Prague, Czech Republic, 2000, proc. of chalenges, pp.223-227

[3] Bukhres O. A., Elmagarmid A. (eds.): Object–Oriented Multidatabase Systems: A Solution for Advanced
Applications, Prentice Hall, 1996

[4] Fankhauser P., Gardarin G., Lopez M., Munoz J., Tomasic A.: Experiences in Federated Databases: From IRO–
DB to MIRO–Web. Porc. of the VLDB Conference, USA, 1998, pp. 655-658

[5] Inmon W. H.: Building the Data Warehouse, 2nd edition. John Wiley & Sons, 1996
[6] Jarke M., Lenzerini M., Vassiliou Y., Vassiliadis P.: Fundamentals of Data Warehouses. Springer–Verlag, 2000,

ISBN 3-540-65365-1
[7] Abiteboul S., Hull R., Vianu V.: Foundation of Databases. Addison–Wesley Publishing Company, 1995
[8] Wrembel R.: On Materialising Object–Oriented Views. In Barzdins J., Caplinskas A. (eds.): Databases and

Information Systems. Selected papers. 4th International Baltic Workshop, Baltic DB&IS 2000, Lithuania, 2000.
Kluwer Academic Publishers, March 2001, ISBN 0-7923-6823-1, pp. 15-28

[9] Wrembel R., Morzy T.: Incremental Maintenance of Materialised Object-Oriented Views by Using Deferred
Technique. Proc. of the 15th International Symposium on Computer and Information Sciences – ISCIS'2000,
Turkey, 2000, pp. 383-390

[10] Wrembel R.: Deriving consistent view schemas in an object-oriented database. Proc. of the 14th International
Symposium on Computer and Information Sciences – ISCIS’99, Turkey, 1999, pp. 803-810

[11] Motschnig–Pitrik R.: Requirements And Comparison of View Mechanisms for Object-Oriented Databases.
Information Systems, Vol. 21, No. 3, 1996, pp. 229-252

[12] Wrembel R.: Object–Oriented Views: Virtues and Limitations. Proc. of the 13th International Symposium on
Computer and Information Sciences – ISCIS'98, Turkey, 1998, pp. 228-235

[13] Czejdo B., Messa K., Morzy T., Putonti C.: Design of Data Warehouses with Dynamically Changing Data
Sources. In Proc. of the Southern Conference on Computing. The University of Southern Mississippi, October,
2000

