Conceptual Predesign
Bridging the Gap between Requirements and Conceptual Design

Christian Kop

Heinrich C. Mayr

Dept. of Applied Informatics and Information Systems
University of Klagenfurt
A-9020 Klagenfurt, Austria

chris@ifi.uni-klu.ac.at

Abstract

To overcome the impedance mismatch between require-
ment analysis and conceptual design, we introduce an
intermediate step between the two phases, called concep-
tual pre-design. A (semantic) model for that phase should
allow for an easy collection of requirements as well as for
an unproblematic transformation of the collected re-
quirements into entries of a conceptual scheme. We pres-
ent a model that has been developed along these postu-
lates. Following the classical DATA-ID approach, this
model uses a ,, glossary metaphor ™ for scheme represen-
tation. It’s basic semantic notions are ‘thing type’ and
‘connection type’.

1. Introduction

The information systems community usually divides the
information system life cycle into 5 phases: requirements
analysis, conceptual design, logical design, implementa-
tion/physical design and production/ maintenance. Me-
thodical approaches to the early phases like methods of
Object Oriented Analysis (OOA, see e.g. [CoYo9l,
RBPE91]) tend to integrate requirements analysis and
conceptual design. As a consequence, the ‘information
sources’, i.e. the future end-users, are confronted with the
rather abstract conceptual modeling notions that are com-
mon to OOA approaches. Practical experiences show that
this often leads to a design that is insufficiently transparent
for the end-users. But transparency is necessary for vali-
dation purposes.

Moreover, similar to the classical ER-based concep-
tual modeling approaches OOA methods force the de-
signer to early design decisions on what specific modeling
notion has to be associated with a given aspect of the uni-
verse of discourse (UoD) in question. E.g., one has to
distinguish between formal concepts like classes (objects),
association types (relationships), attribute and value types.

mayr@ifi.uni-klu.ac.at

In contrast to that the main objective of requirements col-
lection and analysis should be to ,,capture®, as completely
as possible, the relevant aspects of the given UoD.

Finally, if in a later analysis step such formal decisions

turn out to be inadequate, changes with more or less com-

plex local and global effects will become necessary. These

changes reduce the design traceability and thus again im-

pede the design validation by the end-users.

To overcome these problems we propose, in accor-
dance to [Ceri83], to introduce between the phases of
requirements analysis and conceptual design an intermedi-
ate phase which we call conceptual pre-design: Within this
phase UoD relevant information is collected mainly in
natural language form and ,translated” by the means of a
rather lean semantic model (the Klagenfurt Conceptual
Pre-design Model KCPM) into a glossary-like pre-design
scheme. The pre-design scheme then works as a detailed
scratch pad for the given UoD.

Taking this approach we try to reach the following
two goals:

e to automate, as far as possible, the process of produc-
ing the pre-design scheme by extracting its entries from
the end-user’s natural language requirements state-
ments. This is investigated in NIBA™ a project that
we are running together with colleagues from computer
linguistics.

e to automate, as far as possible, the mapping from con-
ceptual pre-design to conceptual design.

KCPM offers a set of semantic concepts for modeling

static and dynamic UoD aspects. It is based on an on-

tologic approach viewing UoD’s as systems consisting of
interrelated elements (things) that are able to perform
services (operations) and that are activated by events

(messages sent by other things). Thus, there is a strong

relationship to object-oriented approaches that allows for a

rather natural way to map KCPM concepts to OOA con-

! The project is financed partly by the Klaus Tschira Stiftung Heidel-
berg.

2 NIBA is an acronym for Natiirlichsprachliche InformationsBedarfs-
Analyse (natural language requirements analysis).

cepts. As will be seen within this paper, this leads, among
others, to a systematic method for designing (deriving)
class structures.

Within the present paper we will concentrate on the
pre-design concepts for static UoD aspects and we will
show how to map a static conceptual pre-design model to
a conceptual one (the latter based on OMT [RBPE91]).
The KCPM concepts for dynamic UoD aspects and their
mapping to OOA (conceptual) models are actually investi-
gated and will be published in a successor paper.

Section 2 gives an overview of related work and the
position of our framework. In section 3 we describe the
KCPM notions for modeling static UoD aspects and we
present a meta scheme of our framework. Section 4 gives
an overview of the NIBA project and reports on some
practical experiences using KCPM. Section 5 presents the
mapping steps to the conceptual scheme. The paper closes
with a conclusion and some hints on future work.

2. Related Work

At the beginning of the eighties, several attempts have
been made to develop rules, methods or tools to shorten
the gap and to provide for a traceability between require-
ments (expressed in natural language sentences) and con-
ceptual schemes [Eick84, KWDB86, Roll87]. Chen for
instance introduced in [Chen83] eleven rules for trans-
forming structured English sentences into ER-scheme
entries.

The DATA-ID [Ceri83] approach uses glossaries as a
means for requirements representation and proposes a
process model for establishing these glossaries for a given
UoD: In a 1% step, the UoD is to be split up into smaller
areas (homogenous w.r.t. domain language used and/or
w.r.t. common tasks). The 2™ step is devoted to the col-
lection of ‘requirement documents’ (in any form) for each
area. As far as these documents consist of natural language
texts these then are simplified in order to enhance the
extraction of semantics. The simplification (3" step) is
done using a set of syntactical and heuristic rules. Within
the 4™ step the sentences are classified by their key mean-
ing, i.e. describing data, an operation or an event. Corre-
sponding to the sentence class, within the 5™ step informa-
tion is entered into the glossaries that again are distin-
guished into data, operation and event glossary.

Another important approach is the conceptual model
NIAM [NiHa89]. In contrast to other conceptual models,
NIAM does not distinguish between entity types and at-
tributes but introduces so-called object types that are con-
nected to each other through roles. NIAM schemes are
constructed by analyzing natural language sentences. Con-
sider, e.g., the sentence ,.the student with the name Smith
studies the lecture with the title Software-Technology *: 1t
allows for the derivation of the object types student, name,

lecture, title with the roles ,student has name®, ,lecture
has title* and ,,student studies (lecture).

In the context of natural language and information systems
actually discussed are the methods, KISS [Kris94],
RADD-NLI [ABDT95, BDTh96], Color-X [BuRi95].

The KISS method starts with a grammatical analysis.
During this step subjects, objects and actions are ex-
tracted. These are used in the subsequent steps to generate
the conceptual KISS scheme. RADD-NLI extracts re-
quirements from questions expressed in natural language.
According to the user’s answers (also expressed in natural
language) the conceptual scheme is constructed. Color-X
integrates static and dynamic aspects and a formal specifi-
cation of the requirements. The model for the latter (CPL
[DiRi91]) makes use of natural language constructs which
are defined in the so-called functional grammar [Dik78].

Even some of the methodologies for object oriented
analysis (OOA [CoY091, RBPE91]) give hints to extract
classes from textual requirements. The problem here is,
that this step is not strongly supported neither by these
methodologies nor by their tools. Another lack of these
hints is, that the designer is focused on classes only. We
think that attributes and dynamic aspects are also worth to
be collected.

Our approach was mainly influenced by the DATA-
[D approach in that we use glossaries for scheme repre-
sentation and some similar modeling notions. From NIAM
we adopted the ‘object-role’ view for static UoD aspects
that concentrates on identifying objects (‘things’) and their
interrelationships (‘connections’) instead of forcing the
designer to differentiate between entities and values or
associations and attributes at this early design phase. This
does not mean, that we forbid the designer to make that
decision. If he wants to decide between attributes and
classes, he is invited to do so - but this is optional.

3. KCPM: The Klagenfurt Conceptual Pre-
design Model

3.1. Basic notions of KCPM

An important aim for the development of KCPM was to
harmonize the developer’s and the end-user’s view of a
given UoD, i.e., to provide an interface for their mutual
understanding. As mentioned in the previous section, the
approach was influenced by the DATA-ID model which
we extended and specialized to provide at least the same
semantic expressiveness as modern approaches to object
oriented analysis do. The most important modeling notions
of the static part of our approach are: thing type, connec-
tion type, perspective and constraint. We shortly explain
these notions and give examples which show how to repre-
sent their usage within glossaries.

Thing type

Generalization of the conceptual notions class (entity type
or entity set, respectively) and attribute. Thus, typical
things (instances of thing types) are

e natural or juridical persons,

e material or immaterial objects,

e abstract notions.

as well as

e descriptive characteristics of the above mentioned

examples (e.g. a customer name, a product number, a

product description).

In contrast to that DATA-ID distinguishes between entity
types and attributes but we did not want to force a re-
quirements engineer to decide on that at such an early
stage of the analysis.

Apart from the simplification this generalization in-
duces for the end-user (in whose world everything just
continues to be a ,,thing™), it also provides for more flexi-
bility during linguistic analysis. For, although there are
heuristics and rules to find attributes in natural language
sentences, these do not work in all situations. In undeter-
mined cases, however, using KCPM we can defer the
decision to later transformation steps. Moreover, the
known conceptual models have different conceptions
concerning which relations between attributes and classes,
between two or more classes, and between attributes they
permit. Hence design decisions often depend on the par-
ticular modeling concept of the model in use. The gener-
alized KCPM approach allows to separate these model
specific aspects from the linguistic analysis because there
is no a priori restriction.

Things are related within the real world. To capture
this, we introduce the notion of connection type. Two or
more thing types can be involved in a connection type. To
define a connection type completely, it must be described
from the point of view (perspective) of all of the involved
thing types. This corresponds to the NIAM object/role
model.

Sentences leading to connections (and perspectives)
are e.g. the following:

(S1) a flight has passengers. (perspective of flight)
(S82) a passenger books a flight. (perspective of passen-
ger)

The abstractions generalization (,,is-a“, with set inclusion
on the instance level) and aggregation (,,is part of*) are
treated as specific connection types.

Static UoD aspects that cannot be modeled using
these notions (and their characteristics, see below) are
captured by (textual) constraints. This is not very sophisti-
cated, but allows the designer to specify functional re-
quirements as well as non functional requirements
[Somm89]. The glossaries form the basis of an informa-
tion resource dictionary for the application in question and

emphasize the scratch pad character. Traceability between
all the entries and the requirements source is given by the
means of so-called requirement source references. In the
default case, these references refer to natural language
sentences. Meta attributes are used for characterizing
aspects of our basic notions. These are represented as
glossary columns. In addition, each glossary entry is
equipped with a unique identification number.

Relevant thing type meta attributes

name: Thing type designator, directly extracted from the
requirements document.

classification: information about the conceptual ,,equiva-
lent” (e.g. entity type, attribute) if extractable from the
text. If it is not extractable it will be determined during the
mapping process from the pre-design to the design
scheme.

quantity: the expected number of instances of the thing
type, e.g., derived from a sentence like

(83) we have 500 employees.
examples: instance denominators of the resp. thing type
(these are not treated as instances of an independent

denominator type), derived from sentences like

(S4) Mr. Miller, living in Klagenfurt, is a typical cus-
tomer.

Value domain: natural language description of the legal
value domain, e.g. from sentences like

(S5) the age_must be over 30.
(86) deliveries are possible all months except July.

synonym: references synonyms (e.g. passenger, customer
in a specific airport UoD).

description: narrative text on the resp. thing type.
requirement reference: a pointer to the (natural lan-
guage) documents/sentences where the resp. thing type is
referenced.

Relevant connection type meta attributes

name: may be derived from one of the perspective names
(see below).

description: narrative text describing the connection type.
Connection type determiner: references, if it exists, an
,,objectification” of the connection by means of an exist-
ing thing type. Consider, e.g., the sentences

(S87) The baggage is assigned to the corresponding flight.
(S8) The ground personnel checks the assignment.

In (S7), the perspective assigned could be seen as a verbal
description of the connection. In (S8) the word assignment

references a thing type which takes part in a connection
with the thing type ground personnel. It seems that as-
signment also references the connection assign. In this
case, the relation between assignment and assign should
be made explicit. This is done using the connection type
determiner, which is itself a reference to a thing type.
additional cardinality: cardinalities which cannot be
expressed in one perspective (see below).

per perspective

perspective name: name of the perspective - normally the
verb of the sentence in its active or passive form.

involved thing type: thing type connected via the respon-
sible perspective.

optional: If there are situations where the involved thing
type needs not to be instantiated as part of a connection,
this value is set to 7rue.

cardinality (min, max): relation qualifier similar to nu-
merous conceptual models: Each cardinality has a lower
and upper bound. The lower bound can range between
zero and a definite number. The upper bound must range
between the lower bound (must have at least the value ,,1%)
and an indefinite value ,,N*.

ToD-area: airport ToD: airport department; —
id¥ name classification |quantity |examples value synonym
description domain source

D001 | airport thing-type S9
D002 | passenger thing-type $1,82
D003 | customer thing-type [Mr. Miller D002 S4
D004 | flight thing-type $1,82,87
DO0S | captain thing-type
D006 | employee thing-type 500 S3,
DO07 | age thing-type over 30 §5,89
D008 | baggage thing-type S7
D09 | ground- thing-type

personnel 56,89
D010 i thing-ty S8
D011 | delivery thing-type all months S6

except July

Figure 1 (part of the thing type glossary)

perspective determiner: circumscribes the involved thing
type of this perspective, e.g. derived from sentences like

(89) Some employees work on airports as ground person-
nel.

In this case employee and airport are the involved thing
types. The thing type ground personnel is seen as a per-
spective determiner [FKM97]. The figures 1 and 2 show
the corresponding glossary entries for the example sen-
tences (S7) to (S9).

A meta scheme specification of these notions is given
in figure 3. The key elements of the model (thing type,
connection type, perspective and constraint) are modeled

as classes. Since they have been explained before together
with their (meta) attributes we now concentrate on the
association between them and on some further concepts.
As has been pointed out, there may be references from a
connection type to thing types, namely perspective deter-
miner and connection type determiner. Both are repre-
sented by associations between thing type and perspective
as well as thing type and connection type respectively. The
involved thing type of a perspective is also a reference to a
thing type. Hence an association with the same name ex-
ists. A perspective is characterized by its name and by its
minimum and maximum cardinalities.

UoD-arca: airport UoD: airport department; -

erspective
de- perpe require-

type scription i involved. min, max| perspective | ment
determiner thing-type | "™ determiner | source

c-id#| name

p00la D004, flight | has

€001 S1,82

pO0Lb | D002, passenger| books

Co02 po02a | DOOG, employee | work (D009, S9

pu02b | DOOL, airport

Q003 D010, po03a | DOOS, baggage | is assigned s7

puO3b | D004, flight

pU04a [D010, assignmend

pu04b [DO0Y, ground- | checks
personnel

min, max: minimum, maximum cardinality.

Figure 2 (part of the connection type glossary)

If the case of n-ary connection types there might be addi-
tional cardinality constraints between subsets of the in-
volved thing types. Think e.g. of a connection type deliv-
ery that connects the thing types customer, product and
vehicle. A functional dependency customer x product ->
vehicle cannot be expressed by perspective cardinalities
but by a connection type specific ‘additional cardinality’.
Customer and product are the sources, vehicle is the tar-
get of that cardinality.

3.2. Design environment

To support traceability between requirements and design
objects (thing types, connection types and constraints)
these are related to their ‘requirement sources’ (see figure
4). We distinguish between textual and other documents.
Textual documents consist of parts, document parts are
supposed to consist of sentences. The distinction mainly
has been made for supporting linguistic analysis, a further
specialization of the other documents (graphical, voice
etc.) could be introduced if necessary.

Designer questions and remarks is another feature of
our scratch pad oriented approach. While collecting and
analyzing requirements the designer might use that feature
to note open questions or remarks.

Each design object is part of an organizational envi-
ronment (e.g. of a department) that again is part of a cer-
tain universe of discourse. Each universe of discourse can
belong to one or more so-called discourse areas. Several
UoD’s belonging to the same discourse area share some
common aspects. E.g., two or more UoD’s could belong to
the same branch, or, some tasks within the UoD’s are
equivalent [BDTh96] like borrowing books/media and car
rental, or, because of other reasons.

design object
e ———

conncclion (ype constraint
nane —o conlent
connection type description kind
o additional cardinality
min, cardinality
hys max. cardinality target
I source thing type
perspective connection lype determiner thin; g l)pcbnﬂmc
optional ;lqssltgl‘i:allgll -
perspective name involved thing type hing ; pe description
min. cardinality exun:pl es
L uantily
max. cardinality ve dete ¢ L
2 perspective determiner value domain

synonyim

Figure 3 (KCPM meta scheme)

organisati nvi < universe of di —e discourse area
name + name I+ name
[]
N . Tequiremen i ‘
design object ‘ cquircment source |

] informant ‘

name

answered by

designer question/remarks
description
type

part of document
content

sentence
senience conient

‘ connection type ‘ ‘ constraint ‘ thing type
{ !
]

Figure 4 (scheme of the design environment)®

* The notation again corresponds to that of OMT. Examples for how to
read the scheme are the following:

A universe of discourse consists of one ore more organizational envi-
ronments (part of!)

A connection type, a constraint, a thing type IS A design object

A design object belongs to 0 or more requirements sources and vice
versa.

A requirement source has exactly one informant/An informant is re-
sponsible for 0 or more req. sources.

A designer question can be answered by 0 or 1 informant.

4. Applicability and tool support
4.1. Practical Experiences

Corresponding to our background in business application
domains, KCPM is intended for the ‘pre-design’ of busi-
ness information systems (BIS). It seems to be very likely,
that it might be useful for requirements specification
within other application domains, too. This, however, is
still to be investigated.

First extensive experiences in using KCPM were
gained from a project run by an Austrian newspaper pro-
ducer: The project’s goal was to identify the requirements
for a new business information system to support the com-
plete sales organization including the control of newsmen,
the newspaper distribution etc. In order to get the require-
ments as completely as possible, a participative approach
was been chosen integrating employees concerned of all
levels and departments: from the head of the sales depart-
ment to the stock clerk, from administrative people to the
newsmen.

It turned out that all of them, though using the KCPM
notions rather intuitively, did this in a correct way. They
did so without having experience in KCPM nor having a
specific initial training. In accordance with the enterprise
only short introductions into the glossary structure were
given at the beginning of the interviews.

Especially the description of static UoD aspects
posed no problems at all. Against that, for gaining re-
quirements concerning the application dynamics, the ini-
tial KCPM glossaries had to be simplified to some extent.

Several hundreds of thing and connection types were
identified within the requirements collection phase. Their
validation and consolidation (i.e., the integration of the
views of different persons) could be done rather easily.
Problems arose only from the fact that at that moment only
a simple MS-Excel based tool was available for handling
glossaries. This, however, is not sufficient when dealing
with large numbers of thing types etc. (think, e.g., of
mechanisms for homonym and synonym detection, graphi-
cal representation, reorganization following clustering
decisions etc.).

The glossaries resulting from that project were used
as the basis for contracting the system realization (with a
well known German BIS supplier).

4.2, Scalability

At a first glance, our approach seems to let explode free
text into much larger tables, thus arising the question of
scalability. Clearly, tables are physically more spacious
than free text. On the other hand, they allow for a struc-
tured representation of complex and voluminous informa-
tion that may be organized, manipulated and analyzed
using computerized methods.

(If we disregard, e.g., the semantic modeling aspect, a
KCPM scheme might be seen as a special kind of data
dictionary with all its advantages.) On the other hand, a
closer look at the tables of figure 1 and 2 shows that there
are a lot of empty table fields reflecting that necessary
information is not referred to in sentences (1) to (9). Thus,
further sentences are necessary (i.e. asked by a system
analyst recognizing the empty fields), that would not lead
to further glossary lines but to a more complete descrip-
tion of the requirements.

4.3. The NIBA project

Actually we are re-implementing our first prototype sup-
porting the handling of KCPM glossaries. In addition to
that we run the joint project NIBA with the department of
computer linguistic of our University. The goal of NIBA is
to automate, as far as possible, the process of producing
pre-design schemes by extracting their entries from the
end-user’s natural language requirements statements. Our
approach uses as a linguistic basis the natural language
grammar model NTS (Natirlichkeitstheoretische Syntax)
[MFW98]. This grammar model is based on generative
syntax, and is extended to semantic characteristics. A
parser is available, which transforms a sentence into a tree
structure. Using this tree structure we derive from natural
language phrases entries of the predesign scheme. Work
has been done so far to derive the glossary concepts thing
type, perspective and connection type, cardinality, per-
spective determiner, connection type descriptor (see
[FKM96, FKM97)).

Another aspect is the mapping from conceptual pre-
design to conceptual design. This is necessary to get a
formalized view of the UoD. We do this in several steps.
First a check is made, whether the glossaries entries are
consistent, then the glossary entries are mapped to the
entries of the conceptual schema. In our prototype system
this second step (mapping of the glossary entries) was
implemented, to show the correspondence between the
glossary entries and conceptual schema entries.

5. The mapping process

For the derivation of a first cut OMT-Scheme from re-
quirements documents we propose an iterative process
model consisting of two phases (predesign and transfor-
mation) with three steps each.
e predesign steps:
e glossary initialization
e entry collection (=modeling using KCPM notions)
e consistency and completeness check

e transformation steps:

e mapping to conceptual notions

e restructuring

e completion
We will discuss these steps in some detail in the following
subsections.

initialization

requirements collection

analysis completed

consistency and make
completeness check corrections
successful
mapping of conceptual make
schema notions corrections

transformation successful
make

restructuring corrections

successful

complete

completion

completed

first cut OMT Schema

Figure 5 (mapping process)
5.1. Initialization and information collection

The first step, glossary initialization, relies on the as-
sumption, that a designer knows something about the or-
ganizational environment of the UoD. He may want to fill
in these known information before he interviews end-
users. Of course, the first phase is optional or might be
done automatically (reuse out of a design knowledge base,
e.g. consisting of generalized discourse area specific glos-
saries). For a more detailed description see [Mayr95].

In the information collection step the designer adapts
existing glossary entries and collects new ones from re-
quirements documents (generated e.g. via interviews) until
all involved requirements sources are ‘exhausted’. The
mapping part of this step is, as has been mentioned before,
addressed in our NIBA project.

5.2. Consistency check
This step can be formalized to a large extent and thus

again be deferred to a computerized tool: the contents of
the glossaries are to be checked whether they are consis-

tent and structurally complete. Any detected inconsistency
or incompleteness must be corrected by the designer.

The completeness check addresses mandatory values for
meta attributes, connectiveness (no isolated thing types),
perspective cardinalities, names etc..

An example for inconsistency checks is the search for
cycles established by aggregations or generalizations.
Another check addresses the identification of synonymous
thing types or connection types. If, e.g., tWwo or more con-
nection types share the same involved thing types, then it
should be detected and presented to the designer. This
concept is known from conceptual schema validation, see
[Stor91].

5.3. Mapping to conceptual notions

This step again may be automated to a large extent on the
basis of a predefined set of mapping rules. Clearly these
rules depend on the model chosen for conceptual design
(OMT in our case). We distinguish laws and proposals:

A law forces a specific mapping (e.g. a given thing
type to a class). If the designer does not follow the law, the
conceptual scheme will become inconsistent. A proposal
means, that the proposed mapping is more likely than
another one. Thus, the designer may accept the proposal or
take another decision.

Furthermore, rules may divided into direct and indi-
rect ones. Direct rules determine a target notion immedi-
ately from glossary entries. Indirect rules use, in addition,
results of previous mappings.

Examples (target model OMT)

1. A thing type maps to a class if it is involved in a con-
nection type to itself (e.g. an employee manages other
employees)

This rule is a direct law, because OMT only allows classes
to enter recursive relationships (associations).

2. A thing type with a suffix like ,, *name*, ,, *address*
etc. in its name may map to an attribute.

This rule is a proposal, because mapping to a class would
not result into an inconsistent conceptual scheme.

3. A binary connection type (two involved thing types)
where one of the involved thing types previously was
mapped to an attribute maps to a class.

This rule is a law, since OMT does not allow for nested
attributes. It is indirect since it refers to previous mapping
results.

Based on the different kinds of rules, meta mapping rules
as given in table 1 may be formulated.

Table 1 (meta mapping rules for mappings to the
conceptual notions class and attribute)

Class attribute mapping
1 | law/proposal | --- class
2 |- law/proposal | attribute
3 |[Law proposal class
4 | Proposal law attribute
5 | Proposal proposal design decision
6 |Law law contradiction

Table 1 has to be read as follows: If only rules for one
alternative exist in a given situation, then the correspond-
ing mapping has to be chosen (see rows 1 and 2). Laws
overrule proposals (see rows 3 and 4). If only proposals
are applicable in a given situation, then the designer has to
decide on the target notion (see row 5). If conflicting laws
are applicable, then the designer has to check for and to
solve the reason for that inconsistency (see row 6). Figure
6 details the mapping step.

requirements collection

consistency and
completeness check

mapping

direct determination of classes
direct determination of attributes

handlc contradictions and proposals

nothing (o handle

iterative indirect determination of classes
successive indirect determination of attributes

handle contradictions and proposal

nothing to handle

usage of meta-rules |

handle contradictions and proposals

nothing (o handle

restructuring |

'

Figure 6 (mapping step - detail)
5.4. Restructuring and completion

Restructuring bases on consistency checks at the concep-

tual level. Typical checks are

e the check for orphan classes [Tauz89], i.e., classes
which are not related to other classes,

o the check for classes with identical attributes. If such
classes exist one has to decide if the classes are syn-
onymous or if they establish a generalization hierar-
chy.

As a consequence of such checks changes on the predesign
level, i.e. within the glossaries, might become necessary
(‘restructuring’). Typical restructuring candidates are the
perspective determiners (see [FKM97] for more details).

Restructuring is followed by the completion step
where incompleteness is detected by analyzing the con-
ceptual scheme.

6. Conclusion

Conceptual predesign as proposed within this paper may
bridge the gap between natural language requirements
specifications and conceptual design. Using a lean but
semantically powerful model like KCPM together with a
glossary-based representation paradigm provides for an
interface between end-users and designers that is transpar-
ent to both. This has been experienced in a rather large IS
design project for an Austrian newspaper producer, where
end-users with all kinds of educational backgrounds were
involved.

Trivially, predesign schemes also might be visualized
by graphical representations where necessary. More im-
portant is the fact, that models like KPCM seem to be an
ideal ‘interlingua’ on the way from natural language re-
quirements specifications to conceptual schemes. This is
exploited in NIBA project, where automatic means are
developed for deriving glossary entries from textual
documents and for mapping these entries to conceptual
schemes.

This paper concentrated on (notions and methods) for
static UoD aspects. However, dynamic aspects are covered
by KCPM as well. We actually work on the mapping of
KCPM events to conceptual state diagrams.

Experiences with KCPM up to now exist for the ap-
plication domain of business information systems. It is still
to show, to what extent KCPM could also be useful within
other application areas.

We finally want to express our thanks to the ICRE review-
ers for their valuable comments that led to a substantial
improvement of this paper.

References

[ABDT95] Albrecht, M.; Altus, M.; Buchholz, E.; Diisterhoft,
A.; Thalheim, B.: “The Rapid Application and Database Devel-
opment Workbench - A Comfortable Database Design Tool”.

In: Proc. Int. Conference on Advanced System Engineering
(CAiSE), Finland, 1995.

[BDTh96] Buchholz, E.; Diisterhoft, A.; Thalheim, B.; “Cap-
turing Information on Behavior with the RADD-NLI: A Lin-
guistic and Knowledge Based Approach”. In: [RiBu96] pp. 185 -
196.

[BuRi94] Burg, J.F.M.; Riet van de, R.P.: “Color-X Event
Model: Integrated Specification of the Dynamics of Individual
Objects”. In: [Papa95] pp 146-157.

[BuRi96] Burg, J.F.M: Riet van de, R.P.: Analyzing Informal
Requirements Specifications: A first step towards conceptual
modeling. In [RiBu96]. pp 15-27.

[Ceri83] Ceri, S. (ed.): Methodology and Tools for Database
Design, North Holland 1983.

[Chen83] Chen, P.: “English Sentence Structure and Entity
Relationship Diagrams”. In: Int. Journal of Information Sci-
ences, Vol. 29, 1983, pp 127-149.

[Chen91] Chen, P. (ed.): Data & Knowledge Engineering. North
Holland Publ. Comp., Vol. 7, 1991.

[CoY091] Coad, P.; Yourdon, E.: Object-oriented Analysis.
Prentice Hall 1991.

[Dik78] Dik, S.C.: Functional Grammar. North Holland Publ.
Comp., 1978.

[DiRi91] Dignum, F.: Riet van de, R.P.: “Knowledge base mod-
eling based on linguistic and founded in logic”. In: [Chen91] pp
1-34.

|Eick84] Eick, C. F.: “From natural language to good database
definitions - a database design methodology”. In: Proceedings
of the International Conference on Data Engineering. Apr.
1984, pp 324 - 331.

[Fetr97] McFetridge, P. (ed.): 3 International Workshop on
Application of Natural Language to Information Systems.

[FKM96] Fliedl, G.; Kop, Ch.; Mayerthaler, W.; Mayr, H.C.;
Winkler, Ch: “NTS-based derivation of KCPM cardinalities:
From natural language to conceptual pre-design™. In: [RiBu96]
pp. 222 - 233.

[FKM97] Fliedl, G.; Kop, Ch.; Mayerthaler, W.; Mayr, H.C.;
Winkler, Ch: “NTS-Based derivation of KCPM Perspective
determiners”. In: [Fetr97]

[Kris94] Kristen, G.: Object Orientation: the KISS Method -
From Information Architecture to Information Systems. Addison
Wesley, 1994,

[KWDBS86] Kersten, M. L.; Weigand H.; Dignum F.; Boom, J.:
“A conceptual modeling expert system™. In: [Spac86] pp 35-48.

[Loch89] Lochovsky. F. H. (ed.): Proceedings of the 8" Int.
Conference on Entity Relationship Approach. North Holland
Publ. Comp. Oct. 1989.

[Mayr95] Mayr, H.C.: “Conceptual Pre-design: A Platform for
ReUse of Requirement specifications”. Larry Latour, Kevin
Wetzel (eds). Proc.. WISR'95 - Intern. Workshop on Sofiware
Reuse, St. Charles Illinois, August 1995.

[MFW98] Mayerthaler, W.; Fliedl, G; Winkler, Ch.: Lexikon der
Natiirlichkeitstheoretischen Syntax und Morphosyntax. Stauf-
fenburg Verlag Tiibingen, 1998.

[NiHa89] Nijssen, G.; Halpin, T. A.: Conceptual Scheme and
Relational Database Design - A fact oriented approach. Pren-
tice Hall Publ. Comp. 1989.

[Papa95] Papazoglou, M.P. (ed.): The Proceedings of the Four-
teenth International Object-Oriented and Entity Relationship
Conference (OO-ER'95), Gold Coast Australia, 1995. Springer
Verlag.

[PDF87] Pirow, P. C.; Duftfy N. M.; Ford J. C.: “Information
Systems in Practice and Theory”. In: Proceedings of the IFIP
TC8 International Symposium on Information Systems, North
Holland Publ. Comp. 1987.

[RBPE91] Rumbaugh, J.; Blaha, M.; Premelani, W.; Eddy, F.;
Lorensen, W.: Object oriented modeling and design. Englewood
Cliffs, NJ, Prentice Hall, 1991.

[RiBu96] Riet van de, R.P; Burg, J.F.M; Vos, van der A.J..
Application of Natural Language to Information Systems. 10S
Press Amsterdam, Oxford, Tokyo, Washington DC. 1996.

[Roll86] Rolland, C.: “An information system methodology
supported by an expert design tool”. In: [PDF87] pp. 189-201.

[Spac86] Spaccapictra, S.: Proceeding of the 5" International
Conference on Entity Relationship Approach. North Holland
Publ. Comp., Nov. 1986.

[Somm89] Sommerville, 1.: Software Engineering. Addison
Wesley Publ. Comp., 3™ edition, 1989.

[Stor91] Storey V. C.: “Relational database design based on the
entity relationship model”. In: Data & Knowledge Engineering,
Vol. 7, 1991, pp 47-83.

|Tauz89] Tauzovich, B.: “An Expert System for Conceptual
Data Modeling”. In: [Loch89] pp. 205-220.

