
Generic Containers for a Distributed Object Store

Carsten Weich
Institut für Informatik, Universität Klagenfurt

Universitätsstr. 65, A-9020 Klagenfurt, Austria
e-mail: carsten@ifi.uni-klu.ac.at

www: http://www.ifi.uni-klu.ac.at/cgi-bin/staff home?carsten

May 18, 1995

Abstract

In this paper we report of an experiment about how
generic container classes can be used to build up a dis-
tributed main memory object store. This approach is
inspired by the C++ standard template library (STL) but
uses set-like associative structures instead of the array-
like sequential structures mainly used by the STL. The
basic structure is a container with only fundamental func-
tionality. The only way to access the data of the elements
is to apply a function to all the elements. We show how
such containers can be extended to indexed sets and dis-
tributed object stores.

We use Modula-3 to implement the generic classes.
Experiments show that such containers form powerful
building blocks especially suitable for implementing dis-
tributed containers.

1 Overview

Object stores and object oriented databases usually use
the file system as main storage area. Operations on such
databases are designed to limit the number of accesses
to disc blocks. Sometimes they use large main memory
areas as buffer to accelerate operations. In [1] we have
presented a different approach: Why not use main mem-
ory as main storage area and use the file system only to
back up data. This should make it much easier to imple-
ment database operations. Since main memory is limited
on a single compute node, we make use of distribution
and parallelism in order to scale well with a growing
database. If you add a compute node to your database
you not only get more room for storage but also additional
computational power.

We want to use sets as our main container type. Sets
are not ordered by definition—this makes it much easier
to parallelize operations automatically. The programmer
must not make assumptions about the order of performing

operations on elements of a set [2]. Consequently the
operation can be parallelized by applying it on distributed
subsets. Initial observations presented in [3] have shown
that with this scheme you can scale up the size of a set
without making operations slower by adding compute
nodes to the system. The additional communication time
needed can be made up by the additional computational
power from the new nodes.

The main part of this paper presents generic containers
and a generic distributedobject type. They will be used to
implement sets. We express them in Modula-3 [4]. With
generic programming, container structures can be devel-
oped independently from the structure of the elements.
The standard template library [5, 6] has shown that it is
possible to go even further: You can develop algorithms
independently of the container structures they work on.
This is possible by designing one basic generic type with
which container structures can be built. In case of the
standard template library this basic type is an abstract no-
tion of a pointer. As we will explain in the second section
of the paper, we choose a different approach. Our basic
type is less low level, we use whole containers as basic
types.

Our containers provide a very simple interface with
basic operations, which can be implemented efficiently.
You can build up a variety of data structures by subtyping
containers and by combining different kinds of contain-
ers. Due to the simplicity of the interface, they can be
used as object store, as index into objects stores or even as
building blocks for more complex, distributed structures.
As examples we show how indexed containers and dis-
tributed containers can be built using our basic container
classes.

We show how distributable objects can be made using
containers. Distributable objects have an object identi-
fier which is independent of the address space they cur-
rently reside. They can be accessed from remote com-
pute nodes, and they can move from one node to another.
Again we use generic code to develop such objects.

Finally we show how this approach meets the require-
ments of our distributed object store architecture. We
report about our experiments and give an outlook on the
future investigations planned.

Goals

We want to achieve a distributable object store. In order
to make parallelization of operations on the stored data
simpler, we use sets as storage structures. A large set can
be distributed by installing subsets of it on several object
store nodes. Many basic operations can be parallelized
easily by just applying them on these subsets in a first
step. Then the results of the sub-operations (which are
hopefully much smaller in size) have to be collected in a
second step. Selecting objects that meet certain criteria,
calculating sums, maximums or averages and many more
fall in that category. So distributable sets are needed as
our basic structure.

On the other hand, many clients need to access data
according to a certain ordering. This is not possible in
sets. So sorted indexes into the sets are needed. They
can be used to iterate through the set. Indexes are also
needed if a client wants to access the data by means of a
key value. Obviously indexes must be distributed as well
if they become large.

Let us summarize the required structures: We need set
structures for small, large and huge sets. For sets with
frequent update accesses as well as for sets which are
only readed. And we need sorted index structures for all
these. There is no data structure to meet all the needs.
We will have to provide a variety of data structures the
client can choose from.

We can do this by developing generic building struc-
tures, which can be combined to support certain require-
ments of a particular client. Let us take a look at a well
tested library of generic data structures first:

2 The Standard Template Library

The Standard Template Library (STL) [5] was designed
to provide generic building blocks for general purpose
programs. It also provides set containers. Indexed con-
tainers are not directly supported but we could certainly
develop generic code to build them.

In order to construct a unified view to every supported
data structure, STL defines a set of operations with which
all data structures are accessed. Together these operations
are called iterator. This leads to generic code which not
only takes the element type as a parameter. It also pa-
rameterizes the whole data structure. Thus, algorithms
working on a certain structure will work for a broad range
of different structures as well. The operation to switch

from one element to the next in the structure must be
built in the iterator, not into the algorithm. The itera-
tor must also provide a way to return the element itself
(called dereferencing). The element must provide a way
to compare its value with another element.

STL algorithms see containers as pairs of iterators (first
and one beyond last). They access the structure by iterat-
ing through it by means of the predefined operations. By
this, STL algorithms see every data structure as an array.
Some algorithms are only allowed to iterate through the
array by advancing from on element to the next, some
algorithms may jump back or forth to the n-th element
of the array. It is the job of the implementor of iterators
to provide this view. Linked lists, trees or files can be
mapped to iterators. A sorting algorithm for example
works for arrays as well as for a file of records—the it-
erators are pretty different, the names and parameters of
the operations accessing the data is always the same.

We prefer to consider sets as the most primitive view on
aggregations of data. Instead of iterating through the ele-
ments, functions are applied to every single element—in
an undefined order. By this, direct access to every ele-
ment is encouraged, sequential processing is discouraged.
We hope that this view will lead to parallelizable data-
store operations. It is not easy to adopt this view to the
STL. Since iterating through the structure sequentially is
STL’s most basic operation, it is not easy to develop a
distributed structure.

But we can make use of the ideas behind STL to de-
velop a special purpose generic library for distributable
object stores. We also have to transfer the STL mech-
anisms to Modula-3 [4], because this is our implemen-
tation language. The generic Modula-3 containers pre-
sented here have a different view than the STL. We do not
distinguish between the abstraction of iterators and con-
tainers. By not specifying how containers are processed,
we make parallelization much simpler.

3 Generic Containers

Containers are data structures which store elements of
a certain kind. You can insert and remove elements.
You can apply a function to all elements stored. You
can also test whether an element is in the container or
not (fig. 1). Some implementations may rely on hints
about the maximum or average number of elements the
container can hold. You can pass this number when
initializing the container. A container can tell the number
of elements it currently stores.

Set oriented containers are associative in a sense that
they only provide access to already known elements. You
can not identify elements by position nor can you scan
from one to the next. You can search elements by stating

insert

remove

map F(e)

e

e

member e?

Figure 1: The basic structure

a search function which is applied to all elements. If you
already have an element, you can test, whether it is in a
certain container or not.

We define table containers which store tuples (key,
element pairs) as well. If you insert an element into a
table container, you also have to provide the elements
key value. You later access the elements via this key
value.

3.1 The Interfaces

We need two basic interfaces, the associative con-
tainers called Cntr and the table containers called
TableCntr. The first one looks like the following1

GENERIC INTERFACE Cntr(Super, Elm);
TYPE T <: Public;

Public = Super.T OBJECT METHODS
init (sizehint: CARDINAL := 0): T;
member (e: Elm.T): BOOLEAN;
insert (e: Elm.T);
remove (e: Elm.T);
map (p: Closure);
size (): CARDINAL;

END;
Closure = OBJECT METHODS

apply(e: Elm.T)
END;

END Cntr.

Table containers are defined by the interface:

GENERIC INTERFACE TableCntr(Super, Elm, Key);
TYPE T <: Public;

Public = Super.T OBJECT METHODS
init (sizehint: CARDINAL := 0): T;
member (k: Key.T): BOOLEAN;
insert (k: Key.T; e: Elm.T);
remove (k: Key.T);
get (k: Key.T): Elm.T;
map (c: Closure);
size (): CARDINAL;

END;
END TableCntr.

1We do not list the exception handling and other details here.

Both Cntr and TableCntr are generic interfaces. In
Modula-3 this means, that they have to be instantiated
with explicit interfaces. The parameters are the super type
of the container, the type of the elements and the keys.
The module defining the element or key type must export
a type T and at least two of the following procedures:

PROCEDURE Hash (e: T): Word.T;
PROCEDURE Equal (e1, e2: T): BOOLEAN;
PROCEDURE Compare (e1, e2: T): [-1..1];

These procedures define how different instances of ele-
ments or keys can be compared with each other. Hash
returns a hash code which can be used to identify ele-
ments and to store them in hash tables. The other two
are used to compare the value of instances. Which ones
are needed in a certain case depends on the implemen-
tation of the container. For modules describing types, it
is a common convention in the Modula-3 library [7] to
provide these procedures.

Containers can be used in very different ways. Imple-
menters might want them to be subtype of Netobj.T
[8]—to install the container on a remote server—or of
MUTEX—to be able to lock the container to synchronize
multiple accesses to it. So not only the element type is a
parameter but also the super type.

Applying functions

The way to access the elements of a container is to apply
a function to all of them. The function is passed to the
container with the map method. This method takes a
Closure as parameter which contains the function (as
apply-method). If the function needs parameters or if it
produces a return result, theClosuremust be subtyped.
The customized closure contains parameters and return
fields as attributes. For instance a function calculating the
sum of the salary-fields of all Person.T elements of
a container could be applied using the following closure:

SumCl = Closure OBJECT
sum:= 0;

OVERRIDES
apply:= SumOfSal;

END;

This closure can be passed to the map method of the
container, the SumOfSal procedure can access the sum
field, which will contain the final result after map has
terminated. The same mechanism is used in connection
with threads in Modula-3 [4].

As another example let us define a closure for selecting
all Person.T objects that have a salary-field greater
than a certain value:

SelectCl = Closure OBJECT
value : CARDINAL;
result: PersonCntr.T;

OVERRIDES
apply:= SelectPersons;

END;

The value is passed to the SelectPersons procedure
with the value field. The procedure will test each ele-
ment individually and insert those meeting the condition
into the result container.

3.2 Different kinds of containers

The exact specification of the container operations are
left to the implementor of the generic interfaces. E.g. we
might have containers allowing the insertion of duplicates
(like in bags) and others, which will ignore such insertions
(like in sets). For simultaneous access to containers by
different clients: Some implementations might require
the client to lock the whole container before any update
action, others might lock individual elements.

Very often it is necessary to store the data in a sorted
fashion. For this purpose we define subtypes of the basic
container classes. The sorted associative container class
looks like the following, the same technique can be used
for table containers:

GENERIC INTERFACE OrdCntr (Cntr, Elm);
TYPE

Direction = {Left, Right};
T <: Public;
Public = Cntr.T OBJECT METHODS

init (sizehint: CARDINAL := 0): T;
iterate (first: Elm.T;

dir := Direction.Right): Iterator;
END;

Iterator = OBJECT METHODS
next (VAR e: Elm.T): BOOLEAN;

END;
END OrdCntr.

We do not want to change the semantic of the map
method: The order in which it is applied to the elements
is still not defined. To access the elements sequentially,
we provide an additional iterator method. It returns
a cursor object which can be used to scan through the
elements of the container in the order defined by the
Elm.Compare function. Note that code written for ba-
sic containers can still be used for ordered containers,
because the latter are subtypes of the first.

We will use subtyping for a number of other purposes
as we will see in the following.

3.3 Subtypes of the Container Classes

The operations performed by containers are rather fun-
damental. There is only the map method to access the

elements, e.g. for tasks like searching or working on sub-
sets. Algorithms which are of interest for more than one
client are implemented as generic modules which define
subtypes of some container type. Obviously this means
that they do not have to be reimplemented for whatever
container they should work on. As first example let us
look on set operations. A generic module containing the
common set operations could have an interface like the
following:

GENERIC INTERFACE Set(Container, Elm);
TYPE T <: Public;

Public = Container.T OBJECT METHODS
init (): T;
select (c: SelectClosure): T;
union (s: T): T;
intersect (s: T): T;
equal (s: T): BOOLEAN;

END;
SelectClosure = OBJECT METHODS

test (e: Elm.T): BOOLEAN;
END;

END Set.

The interface is called Set, but if the super type is a
container that allows multiple insertions it will act like a
bag. The key point is that the (generic) implementation
of the Set module uses only operations of the container
interface.

The method select returns a new instance of the
same set type container, which contains all elements that
have met a certain criteria. The criteria is tested by a
test method passed to select as parameter. The
methods union and intersect can be used to gen-
erate new sets containing the union or the intersection
between the set itself and another set passed as param-
eter to the methods. Finally equal can be used to test
whether the set contains the same elements as another
one passed as parameter. All these can be implemented
using the map method defined in the super type. If you
want to print out all elements of the set that meet a certain
condition, you write:

set.select(cond).map(print)

Whereset is an instance of typeSet.T,cond provides
a test method checking the condition and print pro-
vides the method that prints individual elements.

3.4 Rearranging containers

If you need alternative access to some container data, or
if you want to rearrange the data it contains, all you have
to do is to copy it. E.g. sorting a container means to copy
it to an ordered container. A trivial generic module will
do this job:

GENERIC INTERFACE CntnrCopy (Cntnr1, Cntnr2);
PROCEDURE Copy(c1: Cntnr1.T): Cntnr2.T

END CntnrCopy.

Its generic implementation only needs the map method
of the source container and the insert method of the
destination.

4 Putting containers together

Now we are able to show the efficiency of our contain-
ers. Due to the simplicity of their interfaces, it is rather
easy to use them as building blocks of more complicated
structures (which might them self be containers). We will
present two examples: Containers with indexes attached
to them and distributed containers. Both use contain-
ers again to implement their features. So it is possible
to control their behavior, efficiency and complexity by
passing suitable container instances as parts when instan-
tiating the final structures. For instance you can pass
a distributed container as index structure to the generic
indexed container—which will lead to a container with
a distributed index without one single additional line of
code.

4.1 Indexed Containers

One of the most important structures in large data stores
are indexes. They provide alternative access to large
amounts of data to accelerate certain repeatedly needed
retrievals. Suppose we have a huge container containing
all student data records of an university. If a certain
algorithm needs access to all students attending a course
we need an index pointing to only that data. Another
need might be to access the student data by their name
and alternatively by their “matriculation number”.

Using generic containers this is a very simple task. We
first define a subtype of a generic container class contain-
ing additional methods to attach and detach indexes to it.
Note that it is left to the instantiation whether the super
type is a ordered container or not (see 3.2).

GENERIC INTERFACE IndexedCntr
(Cntr, Index, Elm, Key);

TYPE
GetKey = PROCEDURE (e: Elm.T): Key.T;
Test = PROCEDURE (e: Elm.T): BOOLEAN;
T <: Public;
Public = Cntr.T OBJECT METHODS

init (sizehint: CARDINAL:= 0): T;
addIndex (index: Index.T;

getKey: GetKey;
test: Test:= NIL);

removeIndex(index: Index.T);
END;

END IndexedCntr.

The method addIndex attaches a new index structure
to the container. Index.T is a table container mapping
Key.T values to Elm.T instances (which are the ele-
ments of the indexed container). You have to provide

a getKey procedure which calculates the key value of
a particular element. As an option you can also pass
a test procedure which decides whether an element
should be contained in the index or not.

So if we want a structure containingall students attend-
ing a course, we do the following: We provide a container
for that structure, pass it to the indexed student set using
the addIndex method together with a test procedure
(which selects the corresponding students). This will
generate the index and the indexed container will keep
it up to date until we detach it with the removeIndex
method.

You can add more than one index to an indexed con-
tainer. Still all have to have the same key type. If this
is not convenient, you can subtype an indexed container
again with the same generic interface but a different key
type parameter. The subtype will have two addIndex
methods, one for each key type.

At this point we list a fragment of the generic code
of the indexed container. It is the implementation of the
insert method.

PROCEDURE Insert (self: T; e: Elm.T) =
BEGIN

Cntr.T.insert(self, e);
VAR ind:= self.indices;
BEGIN

WHILE ind # NIL DO
IF ind.test = NIL OR ind.test(e) THEN

ind.index.insert(ind.getKey(e), e)
END; (*IF*)
ind:= ind.next

END (*WHILE*)
END

END Insert;

The statement Cntr.T.insert(self, e) is a su-
per call to insert the element in the container itself, the
line ind.index.insert(...) updates the index.
This is all we have to do. The complete generic imple-
mentation of indexed containers counts little more than
100 lines of code.

4.2 B-Trees

B-trees and B*-trees were developed to minimize access
to disc blocks when searching data identified by a key.
While balanced binary trees perform very well in mem-
ory, it makes sense to store more than one key in a tree
node if accessing the node is expensive [9]. The same
is true if the data is distributed among several compute
nodes (see fig. 2). Since the amount of data stored in a
compute node will be much larger than in a disc block, we
need a special kind of B-tree: The root tree node is much
smaller than the tree nodes in the machines. The nodes
containing the data can be huge. Looking up elements on
a single node must also be efficient.

node containing root

storage node 1 storage node n

B C D E YXWV

F UK R

Figure 2: A distributed B*-tree object store

Again we try to develop such a structure using contain-
ers as buildingblocks. We need three kinds of containers:

� Node containers
They store the elements of the distributed container.
They must be able to split themselves: This gener-
ates a new node if necessary, when the amount of
data increases. They also have to be able to merge
themselves with another node. If the amount of data
decreases, several nodes can be combined in this
way.

The split and merge methods can be implemented
using the map method of the generic containers.
So any container can be transformed into a node
container.

� Root node
This is a table mapping elements to node containers.
It should be a sorted table in which the smallest ele-
ment (according to some element ordering) stored in
a node is mapped to a pointer to the node containing
it.

The root node can be implemented with our basic
table containers.

� Superstructure
We call the structure containing the root table
container-container. It is a subtype of some con-
tainer class with additional methods (see below).

The implementation of a container-container is re-
sponsible for the distribution strategy. The client
can choose between different implementations to
get containers which distribute the elements over
equally sized substructures, or to get one which

replicates the data to accelerate certain client op-
erations, and so on.

Let us take a look at the container-container interface:

GENERIC INTERFACE CntrCntr (Cntr, Elm);
TYPE

T <: Public;
Public = Cntr.T OBJECT

METHODS
init(maxPerNode, minPerNode,

sizehint: CARDINAL:= 0): T;
map (fct: Closure;

coll: CollectClosure:= NIL);
END;

CollectClosure = OBJECT METHODS
collect (cls: ARRAY OF Closure);

END;
END CntrCntr.

We have to redefine the initmethod in order to pass ad-
ditional initialization information to the distributed con-
tainer: How many nodes will be available? At what size
does the client want to split a node into two? What is the
minimum size of a node, i.e. when does the client want a
node to be merged with others?

The map method needs a second closure: The first
one defines the function which has to be applied to all
elements (in all sub nodes). Since we want to do this in
parallel, we get several provisional results. These can be
computed to a final result with the collect method of
the second closure. It can be left nil, if there is no such
result.

As we have seen it is possible to build a variety of stor-
age structures with the container interface (and with little
changes to it). A formal description of a certain instance
of a container must be supplied by the implementor. It

must define the operations exactly and describe their com-
plexity. A system of generic implementations of various
kinds of containers is being developed at our department.

5 Generic Distributable Objects

The generic containers support access to arbitrary ele-
ments. They do not address the problems of accessing
fields and methods of remote stored objects. Especially
they do not solve the problems of simultaneous access
to the data of a particular element. In this section we
demonstrate how access to remote objects can be orga-
nized using containers. The task of looking up the loca-
tion of a remote object and retrieve its data is very similar
to the task of retrieving an element from a container.
If we could express the access to remote objects using
container mechanisms, we could make use of distributed
containers to implement remote data access.

5.1 Dereferencing with Methods

In Modula-3 objects are identified by their reference,
which points to their memory address. This is not suitable
for objects which can reside on several compute nodes.
Especially path expressions are difficult to implement if
the location of the data is not known. Think of a person
record storing the car the person owns. The car record
might have a reference to the manufacturer of the car,
which is a record containing the name of the company.
Determining the car builder of the person’s car would
require an expression like the following:

person.car.manufacture.name

The person record, the car record and the manufacturer
record might reside all in different address spaces. Fur-
ther on, an assignment like

person.car := bmw 525;

which is called when the person buys a new car, again
might require write access to several storage nodes. This
is not possible if the objects above are ordinary Modula-3
objects.

Before we can access the object’s data, we have to
insure that we have an up-to-date version of it. This
could be done by calling a method before reading data.
The above path expression should look like:

person.r().car.r().manufacture.r().name

The r method checks if the data is locally available. If
not it has to retrieve it. Finally it returns the actual value
of the data. Note that changing this value should not
change the actual value of the object.

The expression for setting the persons car attribute
should look like:

person.w().car := bmw 525.r();

The effect is that thewmethod requests write access to the
data object. It returns a reference of the data’s physical
location. This reference points to a writable location of
the data which now can be changed.

The Modula-3 library contains the so called network
objects [8], which provide the possibility to access remote
objects. Network objects can be used to implement con-
tainers on remote nodes. But they were mainly designed
to provide access to remote services. It is not possible to
read or write object fields directly, you can only call the
object’s methods. And then, network objects were not
made to support hundreds of thousands of objects, which
might change their location frequently.

So we propose a different scheme. We need a con-
struct which can be used instead of object references.
The following interface describes a distributable object
pointer:

GENERIC INTERFACE DistObj (Container, Elm);
IMPORT Word;
TYPE T <: Public;

Public = MUTEX OBJECT METHODS
init(c: Container.T; e: Elm.T): T;
copyref(): T;
r(): Elm.T;
w(): Elm.T;

END;
PROCEDURE Equal(o1, o2: T): BOOLEAN;
PROCEDURE Compare(o1, o2: T): [-1..1];
PROCEDURE Hash(o): Word.T;

END DistObj.

Obviously this interface is suitable as element type for our
containers—it contains a T and the necessary comparing
procedures. This type can be used instead of a main
memory address pointer. Dereferencing a distributable
object can be done with two methods: r dereferences for
reading, w dereferences for writing. Obviously, read and
read/write access can be granted to clients by showing all
or only part of the distributable object’s interface. The
r method returns the actual value of the object. The w
method returns a pointer to the a writable location of the
object. If the contents of this location is changed, the
actual value of the object changes.

When initializing a distributable object, we pass the
objects data and a container to the init method. The
container serves as an abstract representation of the phys-
ical location of the object.

The copyref method returns a pointer to the object,
not the object’s value. This representation is of the same
type and points to the same instance than the original. It
is not necessary to look up the current value of the object.
The method acts like assignment of pointer values. It is
not necessary in a single address space. But the repre-
sentation returned by copyref can be sent to another
node.

Log

Checkpoint

Objectstore

User

Archive

horizontal parallelism

ve
rt

ic
al

 p
ar

al
le

li
sm

Figure 3: The components of PPOST

5.2 Implementing Distributable Objects

In a distributed object store with simultaneous access
of several clients, we have to deal with the following
problems.

1. We have to get an actual version of the data when
the r- or w-method is called,

2. We have to deal with locking and consistency prob-
lems if simultaneous read and write accesses oc-
cur. If there are several copies of an objects values
around, we have to ensure consitency after every
write access.

The physical location of the objects data is represented
by a container. You pass the container which can be used
to retrieve the data when initializing an instance of a dis-
tributable object. The code implementing the DistObj
interface delegates the problem of physically distributing
the data to this container. It concentrates on implement-
ing the locking scheme and on keeping consistency.

By using containers as abstraction for physical loca-
tions, we are able to separate the two main problems
of remote object access. Keeping consistency is not a
problem which a container can solve. But it can solve
the problem of retrieving the elements. Different lock-
ing strategies can thus be combined with different storing
solutions.

6 Containers for PPOST

The architecture of PPOST was presented in [1, 3]. In this
section we would like to show, that the presented generic
container scheme can be used to implement such an archi-
tecture. PPOST’s main components are (figure 3): object
store (consisting of a number of object storage machines),
log machine, checkpoint machine, archive machine and
users (consisting of a number of user machines). All the
data of the stored objects (i. e. their attributes and meth-
ods) lie in the memory of the storage machines. PPOST
is transaction-oriented. Every transaction that reads or
changes the data is executed on those machines. Trans-
actions are initiated by the user machines and processed
by the object store. Changes of the data in the object
store are reported to the log machine which saves the
information onto a log file in non volatile memory. This
can be done by for instance by writing to a sequential file
with maximum disc speed.

The checkpoint machine reads the log produced by
the log machine and saves all committed changes to the
disc-based database. It produces a structured image of
the database. If this requires more time, only the log file
on the log machine will grow. The user transaction can
go on as soon as the information about the changes is
transmitted to the log machine.

The archive machine saves the disc-database to a sec-
ondary storage, like a magnetic tape. This is considered
as a normal activity of the data-store and again is done in
background without interrupting the user-transactions.

We call this pipeline-like way to decouple user-
transactions from issues of persistence vertical paral-
lelism. Operations on the stored data can often also be
done in parallel, we call this horizontal parallelism.

With our container templates we are able to offer sev-
eral structures to organize the object store. The users will
get containers as super structures. With our distributable
objects we have explicit control over all write accesses
to the data: All users have to use the w method described
in the last section. This method has all the necessary
information to produce the log records.

7 Results and Future Work

Generic programming turned out to be an efficient tech-
nique to implement many variants of object stores. Once
you have decided to view your data in an uniform way, the
solutions you find for a particular problem can always be
reused for many more problems. Since the parts which
are developed all have similar interfaces, they can be
tested easily and partly automatically. Thus more com-
plicated structures are made with robust building blocks.
Modula-3 proofed to be suitable for this programming

philosophy.
The technique is especially powerful when building

distributed object stores. It makes it easy to switch be-
tween different internal structures say for node subsets or
indexes. Since the result of the combination of sub con-
tainers again forms a container, the technique can be ap-
plied recursively. Once we have a distributed container,
we also have distributed sets, indexes or even nodes to
super-super structures.

Because of this results, we are currently working on
library of different generic containers (it is available via
links from the authors WWW home page). They seem
to provide a very flexible framework for experimenting
with different distribution strategies.

8 Related Material

This paper, the Modula-3 code of the generic containers
and the PPOST papers are available via world wide web.
They can be accessed via links from the authors home
page (the www-address is listed at the beginning of the
paper).

References

[1] L. Böszörmenyi, J. Eder, and C. Weich. Ppost, a
parallel database in main memory. In Proceedings of
the Fifth International Conference on Database and
Expert Systems Applications, 1994.

[2] L. Böszörmenyi and K. H. Eder. Adding parallel
and persistent sets to modula-3. In Proceedings of
the Joint Modular Languages Conference, Septem-
ber 1994.

[3] L. Böszörmenyi, K. H. Eder, and C. Weich. Ppost, a
persistent parallel object store. In Proceedings of the
Second International Conference Massively Parallel
Processing Applications and Development, 1994.

[4] Greg Nelson. Systems Programming with Modula-3.
Prentice Hall, 1991.

[5] A. A. Stepanov and M. Lee. The standard template
library. Doc no: X3j16/94-0095, wg21/n0482, ISO
Programming Language C++ Project, 1994.

[6] D. R. Musser and A. A. Stepanov. Algorithm-
oriented generic libraries. Software—Practice and
Experience, 24(7):623–642, July 1994.

[7] Jim Horning, Bill Kalsow, Paul McJones, and Greg
Nelson. Some useful modula-3 interfaces. Research
report 113, Digital Systems Research Center, Palo
Alto, 1994.

[8] A. Birell, G. Nelson, S. Owicki, and E. Wobber. Net-
work objects. Research report 115, Digital Systems
Research Center, Palo Alto, 1994.

[9] R. Sedgewick. Algorithms in Modula-3. Addison-
Wesley, 1993.

