Adding View Support to
ODMG-93 !

M. Dobrovnik, J. Eder

Institut fur Informatik
Universitat Klagenfurt
Universitatsstr. 65
A-9020 Klagenfurt, Austria

e-mail: {michi,eder}@ifi.uni-klu.ac.at

Abstract

A concept to introduce external models in
object oriented databases is presented, such
that application programs do no longer inter-
face directly the whole conceptual schema,
but work against external schemas specifi-
cally designed for the applications require-
ments. There are virtually no restrictions
for such applications, since the interaction
with the database takes place via updateable
views.

The data model is a somewhat simplified
form of ODMG-93 [4], where we incorpo-
rated the additional constructs we need for
the external schema definition. The approach
makes a clear distinction between types and
classes, and also separates the type and class
hierarchies of the conceptual schema from the
external type and class hierarchies. With
type derivation, we provide a powerful type
restructuring mechanism, which allows to de-
fine an external type which is based on a con-
ceptual type. In the derivation process, one
can omit conceptual components and meth-
ods or redefine their types. Additional meth-
ods can be defined for external types as well.

ITo appear in: ”Advances in Databases and In-
formation Systems: ADBIS '94” | Proc. of the Intl.
Workshop of the Moscow ACM SIGMOD Chapter

By defining well formed external schemas
via constraints and schema invariants, we
are able to guarantee unambiguous method
resolution, steadiness of method resolution
and compliance with the covariant subtyp-
ing principle. The full semantics of the
conceptual schema are preserved. The de-
signer of the external schema can make use
of all information contained in the concep-
tual schema, in particular conceptual meth-
ods can be called from externally defined
ones.

In this paper, we concentrate on the area
of type derivation and method resolution.

1 Introduction

External models [13] in database systems are
used for a number of different purposes. One
key aspect of such a model is the representa-
tion of a specific view of a user or an ap-
plication on the conceptual schema of the
database whereas the external model has to
provide the mechanisms to map terms and
concepts of the conceptual model to those of
a user or application system. Another im-
portant feature of external models is their
interface character. They are the interface
specification between the conceptual schema
and the external clients. Such external mod-
els can also serve as a security mechanism
by restricting certain operations on the con-
ceptual schema. Yet another aspect is the
possibility to predefine queries which can be
used later on.

This external layer results in logical data
independence and reduces the amount of nec-
essary maintenance in case of changes of the
conceptual schema or changes in the appli-
cations. Except for the explicitly desired re-
strictions of the external schema, the appli-
cation should not be restricted in any further

way by the system. So the external schema
should be as tight as needed, but also as
transparent as permissible and possible for
the application. Updateability of the views
is a crucial point in this context.

In the recent past, there have been quite
a lot of proposals for view systems in
OODBMS. These approaches differ with re-
spect to paradigms and aims.

Some of the approaches [2, 1, 3, 11, 12] see
views mainly as named query expressions and
are primarily concerned with the integration
of the type of query results into the type lat-
tice of the conceptual schema.

Others treat the derived types as separate
entities [9], or attach them directly to a root
class [10].

In [8], an approach similar to that pre-
sented here is proposed, but it is less powerful
and discussed at a rather informal level.

We do not intend to determine the be-
havior (the set of applicable methods) of a
type automatically, as it is proposed in [2],
we rather want the designer of the external
schema to explicitly specify the desired be-
havioral aspects of the derived types.

1.1 General Ideas

Our approach is based on the following
points:

e Intensional and extensional informa-
tion are treated differently (types and
classes).

e Provide updateable views by object pre-
serving queries.

e No explicit mapping between conceptual
and external object.

e No introduction of new external object
types that are not based on correspond-

ing conceptual types, as the specific ap-
plication type should not be in the scope
of the view in order to keep good cohe-
sion and low coupling.

e Decouple the external and conceptual
level by introduction of separate type
and class hierarchies for each external
schema.

o Let the view designer specify the desired
behavior of the objects.

e Preserve type incompatibilities of the
conceptual schema (objects that are not
compatible at the conceptual level, are
also incompatible at the external level).

e Provide different external (possible in-
compatible) perspectives of one concep-
tual type in the external schema.

e Provide well formed and closed concep-
tual and external schemas.

e Incorporation of new behavior into ex-
ternal objects.

e Possibility to make use of existing con-
ceptual methods.

o Generate new conceptual object in-
stances from the external model.

1.2 First Sketch of the Data
Model

As already outlined in [6, 5], the data model
will be closely tied to a schema definition
language, a procedural language to write the
method bodies and a declarative query lan-
guage. In this paper we will not elaborate
on these languages but concentrate on key
aspects of the type system.

A schema consists of type and class defini-
tions. Types represent the intensional infor-
mation and describe the structure of objects
and values together with the behavior of ob-
jects. Types are defined in a covariant inher-
itance lattice for structural (top-down) spec-
ification inheritance. In the future, we want
to consider multiple inheritance, but for now
we settle with single inheritance.

Classes are object containers structured in
a inheritance lattice for (bottom-up) instance
inheritance. Whenever an object is member
of a class, it is also member of all its super-
classes. Classes can contain objects which
are compatible with a ground type, but there
can be any number of classes for a given ob-
ject type, including none. An object may be
member in several (unrelated) classes which
are compatible with the objects type.

Methods can be implemented in a Turing
complete programming language which may
also contain expressions of the query lan-
guage. The declarative query language offers
generic operations for projection, selection,
extension and set operations on classes. It is
beyond the scope of this paper but presented
in somewhat more detail in [7].

An external schema provides the defini-
tion context and name scope for the derived
types and classes. In an external schema we
can construct derived types by a type deriva-
tion operator which allows to define an ex-
ternal type based on a conceptual type. In
the derivation, we can apply type restric-
tion, where we can virtually remove proper-
ties (components and methods) from the type
definition, and type extension where we can
add new methods to a type.

A derived type that is as well a projection
as an extension of a conceptual type, can’t be
inserted into the conceptual type hierarchy
in a straightforward manner, without either
loosing the covariant subtyping property or

coming up with a form of cumbersome up-
ward schema inheritance.

So we provide for a different type lattice
for each external schema. Also, a separate
external class lattice is constructed out of
derived classes (views). Views are based on
the conceptual classes and can be built us-
ing the generic query operations mentioned
above. To provide updateable views, the
queries must be object preserving. As al-
ready mentioned, classes are not discussed
in detail in this paper, where we will con-
centrate on the types and type derivation
and on properties of conceptual and external
schemas.

2 Conceptual Schema

Our definition of types and schemas does not
take into account the full richness of ODMG’s
ODL, because for the time being, we st-
rived for a more formal discussion, which
is founded on the essential aspects of the

ODMG data model. So, let us define a

schema:

Definition 1 (Conceptual Schema)

A conceptual schema S = schema(O, A, C)
consists of a set of named object types O, a
set of anonymous non-object types A, and a
set of class definitions C.

Types are used to describe the structure of
objects and values. They define the compo-
nents of objects and the methods which can
be applied to them. We provide several pre-
defined types (e.g. int, bool, string, obj, ...)
which we call atomic types. Other types can
be constructed by application of type con-
struction operators (complex types).

Definition 2 (Types) Can be defined as
follows

o Atomic types are types.

If T is a type, then set(T) is a set type,
the domain of which is the sets of values
of type T'.

If Th,...,T, are types, then tuple(ey,
cosCn) ts @ tuple type, the domain of
which is the tuples of n components,

where each component ¢; = I;/T; has a

name name(c;) = l; and has a domain
Of TZ
o [fN is a Name, S is the name of an 0b-

ject type or type oby, C is a set of com-
ponents (name/type pairs), M is a set
of method signatures my(pi1, ..., pi,.)/ T
and wfo(S,C, M) holds, then To =
object(N,S,C, M) is an object type. S
may be obj, which means that Ty in-
herits directly from the root object type.
N = name(Tp) is the name of the newly
created object type To. S = super(To)
is the supertype from which Ty inherits.
Please note, that in the sequel we will not
explicitly distinguish between the name
and the definition of a type, except where
necessary.

The function wfo() (well formed object) in
the object type definition asserts that only
valid object types can be in the schema. It
will be defined later on.

Definition 3 (Signature) A signature
s(h/Tyv ..., 1,)T,)]T is the description of
the interface of a method named s, which is
also the name of the signature. The method
takes n input parameters and has a result type

of T

Two signatures s,¢ are covariantly signa-
ture compatible if they have the same name,
have the same arity (number of parameters)

all their parameters have the same name, the
type of each parameter of s is a subtype of
the type of the corresponding parameter of t,
and the result type of s also is a subtype of
the result type of t; formally:

Definition 4 (Covariant Signature)
covar(s,t) &
s= fs(la/Ts1y. o lsn)Tsn)]Ts N
t=filla/Ta, . lom/Tem) [Te N
fs=fiAn=mA
V(lsi/Tsisli) Tei) i = Ly N Tsi = Toi A
T, =1,

The following theorem states that the co-
var predicate is transitive which follows di-
rectly from the definition.

Theorem 1 (Transitivity of Covariance)
covar(S,T) N covar(T,U) =
covar(S,U).

We define the subtype relationship in the
usual way:

Definition 5 (Subtype Relationship)
Let S.T be Types then S is a subtype of T
(S =XT) and T is a supertype of S (T = S)

S=1T, or

o S =sel(Sg), T =setl(Tg), S X Tk, or

S = tuple(ls1/TS17' . '7lSn/TSn)7
T = tuple(lT1/TT17 SRR lTn/TTm)7
n>mVi=1,...,m)Ts, 2 Tp,A

lsi = ZT“ or

35'|S = object(N, S",C, M)A S < T

Since all object types inherit either directly
or transitively from type obj, there is a sin-
gle object type hierarchy in the conceptual
schema.

Let S = object(N,T,C, M) where
wfo(T,C, M) holds, then meth(S) and
meth(7') are the set of method signatures
which are defined for S and T respectively.
The defined method set of an object type
consists of the directly defined method set
and of the methods which are inherited from
the supertype. The set of inherited meth-
ods of S is noted as imeth(S) = {m; €
meth(7")|name(m;) ¢ names(M)}. The set
of defined methods for an object type is de-
fined as meth(S) = M Uimeth(S). M is the
set of explicit methods of S, also denoted by
emeth(.9).

Similar definitions apply for the compo-
nents. comp(S) and comp(C') are the sets of
defined components for .S and T' respectively.
The set of inherited components of S is noted
as icomp(S) = {¢; € comp(7')|name(c;) ¢
names(C')}. The set of defined components
for an object type is defined as comp(S) =
C Uicomp(S). C is the set of explicit com-
ponents of S, also denoted by ecomp(5).

For S = object(N,T,C, M) to be a valid
object type definition, wfo(7,C, M) must
hold. We require (1) that each component
in C' that has the same name as one of the
components of the supertype T' has a type
which is a subtype of the type of the inher-
ited component (redefined components types
must be subtypes of the original components
types). The second requirement is (2) that
that the method redefinitions in M are co-
variantly signature compatible with the cor-
responding methods of T'.

Definition 6 (Well Formed Object)
wfo(T,C, M) <

1. N(er € comp(T))V(es € C)

name(cs) = name(er) : Ts =< Tr A

2. ‘v’(mT € meth(T))‘v’(ms € M)
name(mg) = name(my) :
covar(mg, mr)

If all object definitions in a schema are well
formed then the schema obeys the covariant
subtyping principle.

Let us note, that the method object gen-
erating method new() is treated somewhat
special. The execution of T.new() on a type
T results in the creation of a new object with
type T. The actual parameters supplied in
the call are used to initialize the new object
properly. Since it is permitted to define new
components on an object type, it should be
possible to initialize those new components.
This implies that the length of the parame-
ter list of new() is variable. The definition of
covariance required the length of a methods
parameter list to remain constant in the in-
heritance hierarchy. To resolve this conflict,
we allow new() to have a variable parameter
list, thereby exempting it from the covariance
rule. This poses no problem, since there is
another aspect in which new() differs from
the other methods defined for an object type;
new () is a method executed on a type, rather
than on an object. It is not allowed to send
new() to an object. When one writes down a
call of an ordinary method, the most specific
type of the object it will be executed on is not
known. At each call of new(), one exactly
knows the type on which it is applied, so the
parameters can be statically type checked.

For type equivalence and type compatibil-
ity, we use the same rules as in ODMG. Two
types S, T are equivalent, iff S is a subtype of
T and vice versa. More explicitly, two types
are equivalent, if they

e are named types (predefined types or ob-
ject types) and have the same name, or

e they are anonymous types (set or tuple
types) and if their structure is identical.
For set types, the element type must be
identical, and for record types, compo-
nents must be identical in numer, name
and type.

So basically, we use name equivalence for
object types and structural equivalence for
anonymous types. We do not use structural
object equivalence, since we do not want to
introduce additional type equivalences in the
external schema which do not have any cor-
respondence in the conceptual schema.

Such an unwanted equivalence would arise
externally, if two external types have the
same externally visible structure, but could
be based on incompatible conceptual types.

As an example, let Song and Book be two
conceptual types with different structure and
let us define two external types ESong and
EBook via a projection on just the compo-
nents Title and Authors. The application
systems perception of the external types is
just their external structure, there are no vis-
ible connections to the conceptual schema.
For the application it is not possible to make
a decision, whether the two types are equiva-
lent, based on the externally available struc-
tural type information. Using name equiva-
lence, we address and avoid this problem.

An assignment a:=b is defined, if the type
of a is a supertype of the type of the expres-
sion b. The type of an actual parameter must
be a subtype of the formal parameter it sub-
stitutes.

The following example is a small and
simple part of the conceptual schema of a
database. The conceptual schema consists
of three type definitions (interfaces), where
Advisor and Student inherit from Person.

An Example

conceptual schema university {

interface Person {
attribute string name;
attribute date birthdate;
int age();
boolean older(p:Person);

b

interface Advisor:Person {
attribute set(Student)
candidates;
void add_candidate(s:Student);
Advisor new(aname:string,

cands:set (Student));

interface Student:Person {
attribute Advisor the_advisor;
attribute date advised_since;

+
+

int Person::age() {
return years(birthdate-today());

b

boolean Person::older(p:Person) {
return self.age() >= p.age();

b

Advisor::new(aname:string,
cands:set(Student)) {

name=aname; candidates=cands;

b

void Advisor::
add_candidate(s:Student)

candidates+=g;
s.advised_since=today;
s.the_advisor=self;

b

The conceptual schema presented here is
not complete, since no class definitions are
given. As we already mentioned, this paper
concentrates on types, we do not elaborate
on classes here. Some preliminary ideas can

be found in [6, 5, 7].

3 External Schema

An external schema defined on top of a con-
ceptual schema consists of external type and
view definitions.

Definition 7 (External Schema) An ex-
ternal schema E = eschema(S,0,A,V) is
based on one conceptual schema S and con-
sists of a set of derived object type definitions
O, a set of anonymous non-object type defini-
tions A, and a set of derived class definitions

(views) V.

As we did for the conceptual schema, we
will concentrate on the area of types, in the
external schema, in particular on type deriva-
tion. In an external schema we construct de-
rived types by the type derivation operator
derive().

An external derived type is based on ex-
actly one conceptual object type. The ex-
ternal appearance of the object (the exter-
nal type) can be changed from the conceptual
definition.

e Properties (components and methods) of
the conceptual type can be virtually re-
moved from the external type definition.
Since the external type is confined in
narrower bounds, we call this aspect type
restriction.

o Via type extension is also possible to add
new methods (but no new components)

to an external type. So arbitrarily com-
plex additions to the behavior of an ob-
ject can be constructed.

o [t is allowed to change the definition of
the types of components and method sig-
natures (type redefinition).

One of the basic ideas of our concept is
the separation of the type and class hierar-
chy of the conceptual schema from the type
and class hierarchies of the external schema.
Therefore, type derivation must also take into
account the placement of the external types
in the external type hierarchies.

Now let us define the derive() operator:

Definition 8 (Derived Type) With

o N is a Name,

o T’ is an optional external type; called the
external supertype of Ty

o T is a conceptual object type on which
Ty is based; it is called the base type of
T,

o (Up is a set of component definitions;
called the projected components of T,

o Mp is a set of method signatures; it
is called the method projection set and
states how the signature of the methods
of the base type should be interpreted in
the external schema.

o M is the set of direct methods of Ty

then Tr = derive(N, [Ts], T, Cp, Mp, M)
is
a derived type, if wfexo(Ts, Ty, Cp, Mp, M)
holds. For convenience, we further define
pmeth(Tg) = Mp, emeth(Tg) = M,
peomp(T) = Cp, name(T5) = N,
base(Tg) = Tp, super(Tg) = Ts.

The well formed external object predicate
wfexo() ensures the the validity of the deriva-
tion operation. We will define it later on.
Note, that the external supertype Ts is op-
tional. If no supertype is given, then the
new type T will have no external supertype.
By allowing this omission, we facilitate the
definition of multiple unrelated type hierar-
chies in a single external schema. It is also
allowed to derive several different external
types from one conceptual type. By com-
bining this multiple external definitions with
the unrelated type hierarchies, the view de-
signer can restrict type compatibility in the
external schema. But there is no way to
loosen up the type incompatibilities of the
conceptual schema. Conceptually incompat-
ible types cannot be made compatible in the
external schema.

Before we define the wfexo() (well formed
external object) predicate, we need some
auxiliary definitions:

The subtype relationship in the external
schema is defined similar to the conceptual
subtype relationship; the object() construc-

tor is substituted by the type derivation
derive().

Definition 9 (External Subtyping)

Let ST be external types, then S is a sub-
type of T (S <X T) and T is a supertype of S
(T = S)if:

e S=T, or
o S =set(Sg), T =set(Tg), S = Tk, or
o S =tuple(ls, [Ts,,...,1ls,/Ts,),
T = tuple(ly, /Ty - .. 11,/ Tr,,),
n>mVi=1,...,m)Ts, 2 Tr,A

lsi = ZT“ or

o 15|S = derive(N, S, Tg,Cp, Mp, M) A
ST =T

Similar to a conceptual object type defi-
nition, we compute the defined components
and methods of an external type.

Definition 10 (Derived Properties) Let
Ty = derive(N,Ts,Tg,Cp, Mp, M) where
wfezo(Ts, T, Cp, Mp, M) holds, then the set
of defined methods for the external type
meth(Tg) is defined as:
meth(Tg) = emeth(Tg) U pmeth(Tg)U
{m € meth(Ts)|name(m) ¢
names({emeth(Tg) U pmeth(Tg)})}
The set of components comp(Tg) of the ex-
ternal type is:
comp(T5) = peomp(T5)
{c € comp(Ts)|name(c) ¢
names(pcomp(Tg))

An external or conceptual signature s is
externally signature compatible with an ex-
ternal signature ¢ if they have the same name,
have the same arity (number of parameters)
and all types of ¢ are subtypes or derived from
the types of the corresponding parameter of
s. This external covariance is also defined
for comparing method signatures from con-
ceptual and external schema:

Definition 11 (External Covariance)
excovar(s,t) &
s= fs(la/Ts1y. o lsn)Tsn)]Ts N
t=filla/Ta, . lom/Tem) [Te N
fs=FfAn=mA
(Ts =Ty v Ty < base(Ty))N
V(lsi)Tsis i) Te) lsi = L A
(Tsi 2 Ty V Ty = base(Ty))

The motivation for this definition is that
the ’real type’ of an object with external
type T is a subtype of base(T), i.e. it holds,
that each instance of 1" is also an instance of

base(T).

The excovar() predicate is defined for sig-
natures of methods from external and con-
ceptual types. Theorem 2 follows immedi-
ately from the definitions. Furthermore, it is
easy to show, that the covar predicate is also
transitive, which is stated in the theorem 3.

Theorem 2 covar(s,t) = excovar(s,t).

Theorem 3 (Transitivity of excovar())
excovar(s,t) N excovar(t,u) =
excovar(s,u).

Now we define a well formed object deriva-
tion.

We require that the set of projected com-
ponent names is a subset of the names of the
components of the conceptual base type(1).

The type of a component can be rede-
fined to a derived type based on the origi-
nal type, but subtype compatibility with the
corresponding components of the external su-
pertype must still hold (2).

The set of projected method names must
be a subset of the names of the defined meth-
ods of the conceptual base type (3).

Methods from the projection list can’t be
redefined (4).

Methods that are explicitly defined for the
external supertype or that are projected from
the conceptual type, must be covariantly sig-
nature compatible with the corresponding
methods in the external supertype (5).

Methods that are projected from the con-
ceptual base type, must be externally co-
variant signature compatible with the corre-
sponding methods in the base type (6).

If an external supertype was defined in the
type derivation, then the base type of the
newly defined external type must be a sub-
type of the base type of the external super-

type (7).

Definition 12 (Well Formed Object)
For Ty = derive(N,[Ts],Tg,Cp, Mp, M)
to be a wvalid derived type definition,
wfexo(Ts, T, Cp, Mp, M) must hold.
wfexo(Ts, T, Cp, Mp, M))

=

1. names(Cp) C names(comp(Tg))

NS

V(e € ccomp(TR)),e = /1.
V(d € comp(Tg)),d = 14/Ty, 1. =l
= Ty = base(T,)
AY(le/T. € comp(Ts)) Nl =1,
= 1. 21T

3. names(Mp) C names(meth(Tg))
4. names(Mp) N names(M) = ()

5. V(me MU Mp),
V(ms € meth(Ts)),

name(m) = name(ms)

= covar(T,ms)

6. V(m e Mp)
V(m € meth(Tg)),
name(m) = name(m)

= excovar(m,m)

7. if ATs = T = base(Ts)

Requirement (7) in the well formed ob-
ject definition asserts, that when there is an
external subtype relationship between two
types, then the base types of the external
types are in a conceptual subtype relation-
ship. So, there are no possibilities to exter-
nally reverse a conceptually defined inheri-
tance relationship. This property is formu-
lated in the following theorem.

Theorem 4 (Subtype Morphism) Let
S, T be external types, then
S =T = base(S) =< base(T).

An important consequence of this theorem
is that all assignments and all substitutions
of formal parameters in the methods of the
external schema and in the application pro-
grams do not violate the type compatibility
rules of the conceptual schema.

The following theorem formulates, that in
a path of the external type hierarchy all
methods with the same name are external
covariant compatible, independent, whether
they are projected from the conceptual model
or newly defined in the external model. The
theorem follows from the definitions and the
transitivity of covar().

Theorem 5 Let S, T be external types, then
S =T, mg € meth(S),my € meth(T),
name(mg) = name(my) =
excovar(msg, mr) A
covar(mg, mr).

External schemas are imported into ap-
plication programs in a similar way as e.g
schemas can be imported in Oy. The applica-
tion programmer can use only the types and
methods of the external schema but not the
types and classes of the conceptual schema.

The type compatibility for application pro-
grams is defined in the usual way. An assign-
:= bis valid, if the (external) type of
a is a supertype of the (external) type of b (b
can be a variable or an expression). In anal-
ogy, for passing parameters in method calls,
the type of the formal parameter is a super-
type of the type of an actual parameter.

ment a

For new defined methods in external types
(m € emeth(7)) method bodies have to be
defined.
as well as conceptual types and their meth-
ods. Thus, programming external methods

These methods can use external

10

can be seen as programming of the inter-
face between application programs and the
database. As typesin the conceptual and the
external schema may have the same name, we
establish the rule that external goes before
conceptual. If €' is both the name of a con-
ceptual type and of an external type, then C
refers to the external type and conceptual(C')
to the type C in the conceptual schema. The
call of methods of conceptual types can be
performed in a similar way using the @ no-
tation. For external methods we require the
following type compatibility rule: Let T, be
the type of variable a, and let T}, be the type
of the expression b. An assignment a := bis
valid, if base(T}) = base(T,). Substitution of
parameters is treated in analogy. This means
that the type compatibility of the concep-
tual schema is relevant for the programmer of
methods in the external schemas. So restric-
tions defined for application programs do not
apply for methods in the external schemas.

With this design choice we provide great
power and flexibility for external schemas.
For example it is possible to define a method
new() for the external schema, calling the
conceptual method new().

Method Resolution We have several pos-
sible ways to define method resolution in the
external schema. Here, we will present just
one of them. Let us first describe how a
method is found in the conceptual schema.

If a conceptual method is explicitly defined
for a type, then its origin is the type, else
the origin is the origin of the method of the
supertype.

Definition 13 (Conceptual Resolution)

Let T be a valid object type definition and

m € meth(T) be a method defined for T, then
origin(m,T) =T, if m € emeth(T)

origin(m, super(T)), else.

One approach to define external method
resolution for a method m, is to stay in
the external schema, and only to extend the
search to the conceptual schema, whenever
an explicit reference to a conceptual method
is made, i.e. when the method is included in
the projection list:

1. If m is defined directly in £, then E is

the origin of m.

2. If m is in the projection list of F, then
the origin of m is the conceptual origin
of m with the base type of the object as
a starting point.

3. If m is neither in emeth(£), nor in
pmeth(F), then the origin is the origin
of the method in the external supertype.

Definition 14 (External Resolution)
Let derive(E, S, B,Cp, Mp, M) be a valid ob-
jJect type definition, and m € meth(E) be a
method defined for E, then
exorigin(m, E) =

E, if m € emeth(E),

origin(m, base(E)), if m € pmeth(E)

exorigin(m, S), else.
Schema Invariants The possibility to de-
rive several external types from one concep-
tual type poses some problems with respect
to proper method resolution. Let two exter-
nal types T' and T" be derived from the same
base type B, and the external type S be a
common supertype of T and 7". Then a vari-
able o of type S can also contain references
to objects whose external type is T or 1"
When one sends a message m to o, it is not
clear which method body has to be executed.

In order to achieve an unambiguous

method resolution and method-steadiness,
we define the following schema invariants:

11

1. If the external type S is a common su-
pertype of 7" and 7" that are derived
from the same conceptual type, then all
the methods which are defined for S
must have an unambiguous origin with
respect to 17" and T".

Y(T,T"),base(T) = base(T"),
V(ST <5, T < (95),
V(m € names(meth(9)) :

exorigin(m, T") = exorigin(m, T")

2. It the external type S is a common su-
pertype of T" and ', where T' is derived
from a subtype of the base type of 5,
then there must exist a subtype T” of 5’
which was derived from the same type

as T'.
VS, T,5), T <SANS <SA
base(T') < base(S’) =
A(T"),T" =< 5", base(T) = base(1")

As one can see immediately, schema invari-
ant 1 holds for all external schemas, where
there are no two different external types that
are based on the same conceptual type. We
assume that this class of schemas will be a
fairly large one.

Schema invariant 2 holds, if all or none
of the subtypes of a conceptual type get
mapped into corresponding derived subtypes
of its external types.

In the sequel, all schemas adhere to the
schema invariants.

Now we can draw some conclusions from
schema invariant 1 and summarize them in
the following theorem. The theorem could
immediatly be used to derive algorithms for
a stricter version of the schema invariants.

Again, let two external types T and T be
derived from the same base type B, and the
external type S be a common supertype of T'

and 7. Then a variable o of type S can also
contain references to objects whose external
type is T or T’. We distinguish between two
different cases according to the origin of m in

T:

1. If exorigin(m,T) is in the conceptual
schema (so there was an external super-
type in which m was projected), then
also exorigin(m,T") must be in the con-
ceptual schema according to schema in-
variant 1. So there must be a super-
type D of T', where m was projected
in D, and in no type D’ between T and
D, the method m was redefined or pro-
jected. D is the lowest supertype of 1",
where m was projected, and no redefi-
nitions occur below . From the def-
inition of exorigin() we see, that then
exorigin(m,T”) = exorigin(m,D) =
origin(m, base(D)). From schema in-
variant 1 follows origin(m,base(D)) =
exorigin(m, T').

2. If exorigin(m,T') = D is in the external
schema (so there is an external super-
type D of T' in which m was redefined),
then also exorigin(m,T") = D must hold
according to schema invariant 1. So, D
must also be a supertype of 7”, and in no
type D' between T and D, the method
m was redefined or projected.

Theorem 6 (Common Based Types)

Y(T,T") with base(T) = base(T") = B,
V(S) with S = T,8 = T',T # T"
V(m € names(meth(S)) :

1. exorigin(m,T) in the conceptual

schema =
AD, D = T'A
m € names(pmeth(D)) A
VYD, T'"< D' < D:

12

m ¢ emeth(D’
m ¢ pmeth(D'

)
(D)) =

exorigin(m,T) A

)7
)

Y

exorigin(m, T

origin(m, base

2. exorigin(m,T) in the external schema
=

3D,D = T'A
m € names(emeth(D)) A
D =T A
VDL T <D <D -
m ¢ emeth(D'),
m ¢ pmeth(D')

The following special cases of the theorem
are worth noting:

1. If method m is projected immediately
inT,so D =T thenT" < T or m €
names(pmeth(7”)).

2. If method m is explicitly defined imme-
diately in T, so again, D = T, then
T' < T must hold. Also, m must not
be redefined or projected in T".

Now we define the method resolution for
the following situation. Let o be a variable
of type E, and o contains an object of the
conceptual type €. This is only permitted
by the type compatibility rule, if C' is a sub-
type of base(F). We now resolve the method
invocation o.m with the function fetch. The
result of fetch(m, C, E) is a type, where m is
directly defined and this method will be exe-
cuted. We intend to find the most special ap-
plicable method, therefore the searches start
at an external type T under F, which was
derived from the most special type between

C and base(F).

Definition 15 (Fetch) Let D, T be such
that C = D =< base(E) and base(T) = D
and VC = D" <X D, D" £ D : =371 with
base(T") = D', T" < F.
fetch(m,C, E) = origin(m,C), if
exorigin(m,T') in the conceptual schema
exorigin(m,T), else.

In the definition of fetch, T" is the external
type under E which was derived from the
most special conceptual type above C'. For
convenience we provide the function pfetch
which is defined in a more procedural way
and can be implemented in a straight for-
ward manner. It is easy to see, that pfetch
and fetch are equivalent.

Definition 16 (Pfetch)
m € names(meth(E)),C < base(E):
fetch(m,C, F) =
fetchi(m,C,C, E)
fetchl(m,C, D, E) =
origin(m,C), if 3T < E with
base(T) = D,m € pmeth(T)
T, if 3T <X E with
base(T) = D,
m € names(emeth(T))
fetch1(m, C, suped D), F), if
D = base(E)
fetch1(m, C, super D), super(F)),else.

Furthermore, we define the origin of meth-
ods for the @ notation. The expression
0.m@QC" has the following semantics: Let F
be the type of the variable o, 0.m@QT" is well
defined, iff T"and £ are both external or con-
ceptual types and £ < T, or T is a con-

ceptual type and F is an external type and
base(£) < T.

Definition 17 (Fetch at a type)
fetch(m@Q, C| F) = origin(m,C).
Let H be an external type.

13

fetch(m@QH C E) =
exorigin(m, H),
if exorigin(m, H) is an external type,
origin(m, C'), otherwise.
Let H be a conceptual type.
fetch(m@QH, C, E) = origin(m, H).

Theorem 7 Fetch is well defined.

Proof: Fetch is well defined means: a)
Ym,C, FE, with m € meth(F), and C =
base(FE) : fetch(m,C, E) is defined, and b)
it 1s unique.

For a) it is easy to see that there is a
nonempty sequence of D; with ' < D; <
D; 2 D, < base(E), and T; = F, such that
base(T;) = D;, and for all D' < D; : =37"
with base(T") = D', T" < E.

For b) let D be as in a). Let T,7" < F
with base(T) = base(T') = D. Schema
invariant 1 requires that exorigin(m,T) =
exorigin(m,T"), therefore fetch(m,C, F) is
unique independently which 1" is chosen. O

Theorem 8 m € emeth(fetch(m,C, E)).

This theorem states that the resolved
method is directly defined in fetch(m, C, F).
It follows immediately from the definition of
fetch, origin, and exorigin.

In the following theorem we claim, that the
method m in fetch(m, C, F) is covariant com-
patible with the method m of E, irrespective
whether it is a method from a conceptual
type or from an external type.

Theorem 9 (Covariant Resolution)
VE,Y(m € meth(L),
VC < base(F),
VYm' € meth(fetch(m,C, E)),
name(m) = name(m’)
= excovar(m’,m)

Proof:

1. fetch(m,C, E) is an external type T.
It T'" < K, then the theorem follows
from Theorem 5, or £ = T, then
exorigin(m, £) =T.

2. fetch(m, C, E) is a conceptual type, say
A, and m € emeth(A).

(a) If base(E£) < A, then the theorem
follows from Definition 12.6.

(b) With B = base(F), suppose A =<
B. Let us further denote the
method definitions mpg € meth(FE),
mp € meth(B), and my €
meth(A), where all the methods m;
have the same name. With Theo-
rem 6.1 we know that 3D and T
with base(T) = D, C < D, with
my € pmeth(T'), mp € meth(D),
where excovar(mp, mr).

Now we have to show that
excovar(mga,mg). Since A < B,
covar(ma, mg) holds.

We can distinguish three cases, de-
pending on the position of T"and A
in relation to £ and D respectively:

i. Let £ < T, then £ inher-
its mg from T (mgp = my).
Also, B = D according to
the subtype morphism. From
covar(ma, mpg) and the transi-
tivity of covar(), we see that
covar(ma, mp). Now with
excovar(mp, mr) we conclude
that excovar(ma,my). Since
mg = my, the theorem fol-
lows.

. Let T <= FE, and A =
D. Then covar(ma,mp) and
excovar(myg, mg) holds. Now,
with excovar(mp,my), the
theorem follows.

14

iii. Let 7" < K, and A > D.
Then D inherits my from A
(mp = my) and trivially,
excovar(myg, mg) holds. From
excovar(mp, mr) we conclude
that excovar(mp, mg). Since
mp = my, the theorem fol-
lows. O

Theorem 10 (Method Steadiness)
V(E, B, B < E,

V(C = base(FE)),

Vm € meth(E’)

= fetch(m,C, E) = fetch(m,C, E’)

Proof: Let m,C, E and E’ be as above.
Suppose that fetch(m,C,F) = A. Let D,
and T be as in the definition of fetch. Since
D = E < FE' fetch(m,C, E') = A.

Now suppose fetch(m,C, E') = A. Let
D’ and T” be as in the definition of fetch.
Since €' < base(F), D' = base(F). With
schema invariant 2 we know 37 < FE with
base(T) = D, and the theorem follows from
schema invariant 1. O

The theorem has an important conse-
quence which we call method-steadiness, i.e.
if we assign an object to a variable of a super-
type, the executed methods remain the same.
To give an example:

Let e be a variable of external type £ and
¢/ a variable with type E’ which is a super-
type of I/. Then for e.m and ¢.m the same
method body is executed, given they contain
the same object. Therefore, an assignment
¢ := e does not influence which method bod-
ies are processed. Due to the type compat-
ibility requirement this holds for all assign-
ments which can be made on such variables
in application programs.

However, for the methods defined in
the external models, method-steadiness can

only be guaranteed, if the programmer re-
mains within the strict type compatibility.
The looser type compatibility requirement
for these methods may lead to method-
unsteadiness, and the view programmer has
to take care of the effects. Nevertheless, this
looser type compatibility requirement is well
founded and leads to greater flexibility for the
definition of views.

The following example illustrates the prin-
ciples and constructs presented above.

An Example, Part 2 We derive three ex-
ternal types in the external schema E de-
rived from the conceptual university schema;
EPerson is derived from Person, EAdvisor
is derived from Advisor and inherits from
EPerson and AnonStudent is derived from
Student. Note, that there is no external in-
heritance from EPerson to AnonStudent, the
conceptual inheritance relationship is not vis-
ible in the external schema. From Person,
only the name is in the projection list, all
other properties are hidden from the ap-
plications using the external schema. In
type EAdvisor, two additional methods are
defined, the new() method allows to cre-
ate new conceptual objects at the exter-
nal level. Derived type AnonStudent does
not have any attributes defined for its base
type Student, but redefines the concep-
tual method older, which Student inherited
from Person. In the redefinition, the param-
eters type is redefined. The external method
set_advisor() of AnonStudent allows one
to define the advisor for an anonymous stu-
dent. In the conceptual schema, we had no
corresponding method, but there we defined
Advisor::add candidate(). This method
is called in AnonStudent::set_advisor()
via the @ notation.

In the example, we defined an external

inheritance hierarchy, which was different
from the conceptual one. We left out some
attributes and methods of the conceptual
schema and defined new external methods,
which make use of conceptual methods.

external schema E
of
university {

derived interface EPerson
of
Person {
project {
attribute string name;
}
}

derived interface EAdvisor:EPerson
of
Advisor {

project {

attribute date birthdate;

t

int more_than(e:EAdvisor);

EAdvisor new(aname:string);

derived interface AnonStudent
of
Student {
project {
boolean older(s:AnonStudent) ;
t
void set_advisor(a:EAdvisor) ;
t
t

int EAdvisor::more_than(e:EAdvisor) {
return card(candidates) >=
card(e.candidates);

EAdvisor: :new(aname:string) {
return new(aname, {})0;

b

void AnonStudent::
set_advisor(a:EAdvisor) {
a.add_candidate(self)Q;
}

4 Conclusion

We presented a concept to integrate external
schemas in object oriented databases. This
additional level of abstraction offers logical
data independence and a greeter degree of
modularity in information systems.

A clean separation of the conceptual
schema and the external schemas was
achieved by type derivation in combination
with updateable views.

The covariant subtyping of the concep-
tual schema is fully preserved in the exter-
nal schema. The external schema adheres to
the principal type compatibility that the con-
ceptual schema defines. It is not possible to
make conceptual incompatible things exter-
nally compatible. On the other hand, the ex-
ternal level can introduce additional compati-
bility constraints, making conceptually com-
patible things incompatible in the external
context.

Through the introduction of schema in-
variants, we were able to provide covariant
method resolution and method steadiness.

Since we allow to define methods in the
external schema, which can call other exter-
nal as well as conceptual methods, the de-
signer of the external model can implement
methods which overlap the schemas. Such
inter schema methods can be used to im-
plement additional powerful mappings and

16

thereby provide better schema derivation and
integration facilities.

In particular, object creation at an ex-
ternal level is perfectly feasible. The ex-
ternal schema just has to provide a new()
method, which takes care of the necessary
mapping (calls the corresponding conceptual
new() method) and provides default values
for components that are not visible to the
application program.

A crucial point of a schema is that it is
closed, which means for types, that all types
that are needed in the schema are also defined
there. As an aid for the schema designer, we
will provide a type covering operator which
will define a derived type for an external type
similar as the derive() operator does. But
the covering type will have the same name
as the covered type. A covered conceptual
type will automatically be substituted by the
external covering type in the whole schema at
all places where no explicit type substitution
occurs.

Presently we excluded multiple inheritance
on the conceptual level as well as on the ex-
ternal level from our considerations for the
sake of simplicity. But since multiple inheri-
tance is supported in ODMG and also widely
offered by almost all of the current object sys-
tems, we are planning to incorporate it into
the model. Since renaming is an adequately
conflict resolution strategy, we will use it, and
as a byproduct we will be able to do general
renaming between the conceptual and exter-
nal schema.

So far, we concentrated on the intensional
mechanisms for type derivation. Further on,
we will investigate class construction and
derivation concepts. A suitable approach for
this seems to be to define a derived class
(view) by means of a query over conceptual
classes (extents). Besides updateable views
via object preserving queries, we will provide

non-updateable views via object generating

and value generating queries. Restructuring
mechanisms for the class hierarchy will be in-
corporated in the approach along with cor-
responding schema invariants to ensure well
formed external schemas.

References

1]

R. Agrawal and L. DeMichiel. Type
derivation using the projection opera-
tion. FExtended Version of [2], by per-
sonal communication with R. Agrawal,

1994.
R. Agrawal and L.G. DeMichiel. Type

derivation using the projection opera-

tion. In M. Jarke, J. Bubenko, and
K. Jeftery, editors, Advances in Database
Technology - EDBT’94, pages 7-14.

Springer, 1994.

A. Borgida. Modeling class hierarchies
with contradictions. Technical report,
Rutgers University, New Brunswick,

1988.

R. Cattell, T. Atwood, J. Duhl, G. Fer-
ran, M. Loomis, and D. Wade. The
Object Database Standard ODMG-95.
Morgan-Kaufmann, 1993.

M. Dobrovnik and J. Eder. A concept
of type derivation for object oriented
database systems. In L. Gun, R. Onur-
val, and E. Gelenbe, editors, §th Intl.

Symposium on Computer and Informa-

tion Sciences (ISCIS VIII), 1993.

M. Dobrovnik and J. Eder. View
concepts for object-oriented databases.
In Proc. Intl. Symposium on System
Sciences, Informatics and Cybernetics,

Baden-Baden, 1993.

17

7]

[10]

[11]

[12]

[13]

M. Dobrovnik, K.-H. Eder, L. Boszor
mén yi, and J. Eder. An updateable view
system for oodbms. Technical report,

Institut fir Informatik, Universitat Kla-
genfurt, May 1994.

C. S. dos Santos, S. Abiteboul, and
C. Delobel. Virtual schemas and bases.
In M. Jarke, J. Bubenko, and K. Jeffery,
editors, Advances in Database Technol-
ogy - EDBT’94, pages 81-94, Cam-
bridge, 1994. Springer.

S. Heiler and S. Zdonik. Object views:
Extending the vision. In 6th Interna-
tional Conference on Data Engineering,

pages 86-93, 1990.

W. Kim. A model of queries in ob-
ject oriented databases. In Proc. of 15th
VLDB Conference, pages 423-432, Am-
sterdam, August 1989.

E. Rundensteiner. Multiview: A
methodology for supporting multiple
views in object-oriented databases. In
Proc. 18" VLDB Conference, Vancou-
ver, 1992.

M. Scholl, C. Laasch, C. Rich, H.-J.
Schek, and M. Tresch. The cocoon ob-
ject model. Technical Report TR 192,
Institut fir Informatik, ETH Zirich,
1992.

D. Tsichritzis and A. Klug. The
ANSI/X3/SPARC DBMS framework.
Report of the Study Group on Database
Management Systems, Information Sys-

tems 3, 1978.

